Kent Fenley

This spring I looked into reordering the Hoosier Botanicals Six-Pack paper carrying box. The lowest price was for the purchase of 10,000 boxes and they would be $2.00 per box. That would mean that we must have over $20,000 to purchase these boxes.

I looked into another idea that would cost less but would allow us to use the Hoosier Botanical Logo. The logo as a label that could be placed directly on pots and or plastic six-pack carriers. This spring I copied the Hoosier Botanical logo from the web site I laminated it and glued it to a sign stake. This sign held up very well for the sales season but it did fade a bit. I believe that the logo made into a label will fit into our budget and allow us to sell our plants as a Hoosier Botanical. I am including the e-mail information about these labels.

Hi Kent!

Thanks for your patience as we worked to get the pricing on the Hoosier Botanicals label. We looked at producing this tag in two different forms—digital and our standard process.

The label size quoted is 2 1/2 × 1 1/2", based on a 10 thousand quantity.

Digital Process - $45.62 per thousand. For this process, there is a $50.00 prep charge and a $375.00 die charge. We can provide proofs for this process @ $140.00 per proof.

Standard Process - $76.89 per thousand - no charges for proofs. The only additional charge would be for the plates. Four plates would be required @ $26.00 each.

There is also a set-up fee for the artwork, depending on the quality of the artwork provided. We can tell you exactly what the art charges would be once the artwork is mailed/e-mailed to the art dept. This is a one-time charge. Once the artwork is produced, it can be used on any other product you might want to order.

Either of these processes will give you an excellent quality label. When, comparing the pricing, you end up paying, approximately, .09 per label. This is not a bad price considering the many uses available, especially when considering you will be able to brand your products. The best price per thousand is, of course, the digital process. Even though the initial set-up cost is higher, re-orders would save $30.00 plus per thousand. Please review this information and get back to me by e-mail or phone.

Thanks!

Phil Germann
The John Henry Company.
Home office: 513-388-0144
Mobile phone: 513-310-6046
e-mail: phgerm@aol.com

Your Ideas and suggestions are needed. I plan to order labels for the spring of 2005. The labels will be made available to our participants at cost. We will add a small fee to the labels to help cover some Hoosier Botanicals expenses.
INTRODUCTION

Arugula is a collective name for a number of species of the Brassicaceae with pungent leaves, but principally Eruca sativa Mill. This species has been known since antiquity and is listed in the Greek herbal of Dioscorides (Materia Medica) written in the first century (Fig. 1) as well as the English herbal of John Gerard (1597). Arugula is a low-growing annual with dull-green, deeply-cut, compound leaves which have a distinct spicy-pungent flavor (Palada and Crossman 1999). Like other Brassicas, it contains glucosides such as allyl sulphonocyanate while the seed oil contains erucic acid (Nuez and Hernandez 1994). In various Mediterranean countries it is cultivated as a salad green or cooked vegetable and is also grown in Asia as an oilseed crop. Three species are used for human consumption: E. sativa and a wild type E. sativa vesicaria (L.) Cav., both annuals; Diplotaxis tenuifolia (L.) DC, a perennial species, and D. muralis (L.) DC, a polyploid perennial (Pignone 1997). Arugula is also known as rocket (English), roquette (French), rucola or rughetta (Italian).

Arugula is widely consumed in Italy where its pungent qualities are appreciated, either consumed alone as a green, as part of a salad mix, as a cooked green, and now very popular as a pizza topping. The wild form with thin dentated leaves is increasing in popularity. Arugula has appeared in US markets from California production and can be found in select supermarkets as a specialty green and it is often found in farmer’s markets as part of a mesclun mix.

Arugula is a fast growing, cool-season crop and flowers under long days and high temperature. This crop appears well adapted to the Midwest and offers the possibility of a specialty green that could be available over a long period with season extension techniques as it is adapted to greenhouse culture. Our trials indicate it can be harvested after 20 to 27 days and then sequentially harvested from regrowth. European interest in promoting this underutilized crop has prompted the formation of the Rocket Genetic Resources Network, a project of the International Plant Genetic Resources Institute (IPGRI). The proceedings of a 1996 workshop (Rocket: A Mediterranean crop for the world) contains a number of papers on its culture and biology (Padulosi and Pignone 1997).

This study was undertaken to investigate the potential of arugula as a new crop for Indiana and the US Midwest. Our experience with this crop, both horticulturally and organoleptically as a salad green, has embolden us to become champions of this species despite the fact that it is not well known or appreciated in this area. The main obstacle to this crop appeared to be early bolting and this study was originally undertaken to investigate the possibility of selecting late-bolting material as well as to explore the adaptability of this species for Midwestern conditions. We now believe that sequential planting combined with repeated harvest may be a way to manage this crop despite high bolting under high temperatures.
METHODOLOGY

1999 Season

Seed of *E. sativa* ('Astro' and 'arugula') and the wild *D. tenuifolia* ('Sylvetta') was obtained from Johnny’s Selected Seeds, Albion, Maine and planted in 128-cell trays (3 seeds per cell and thinned to a single seedling) in the greenhouses of the Department of Horticulture, Purdue University on June 17, 1999. ('Astro' is a selection made by Johnny’s that has large leaves, with less dentation that the ‘arugula’ type.) There were four trays per entry producing an original population of 512 plants per entry. Plants were grown under continuous illumination with incandescent lights (110 to 140 mmol m⁻² s⁻¹) during the duration of the experiment. Each tray was placed on a plastic flat which could maintain fertigation water to prevent plants from drying out in spite of the small amount of soil. Plants started flowering 30 days after planting and flowering plants were removed daily when flowers could be distinguished. In mid-August, 18 ‘Astro’, 15 “arugula” and 9 ‘Sylvetta’ plants, which had not yet flowered, were transplanted into 8-L containers and left to flower. However, seed setting was poor (apparently due to self incompatibility) and only a few seeds from 5 ‘Astro’, 4 “arugula” and a single ‘Sylvetta’ plants were collected. The wild type ‘Sylvetta’, with smaller and more deeply parted leaves and smaller seeds, had very poor seed setting and was eliminated from the experiment.

2000 Season

Seed from 5 ‘Astro’ and 4 “arugula” late-flowering selections and the original ‘Astro’ cultivar were planted in trays in the greenhouse on April 10, 2000 and subsequently moved to a plastic greenhouse on May 1; there were a total of 504 plants from the 9 selections and 504 of the original ‘Astro’ cultivar. Visible flowers appeared by May 8 and flowering plants were discarded daily during the next 4 weeks. Thus, two months after planting the trays, 46 plants (9%) were eliminated from the late-flowering selections and 178 plants (35%) were eliminated from the original ‘Astro’. This difference reflects the effectiveness of the initial selection. Non-flowering plants were hardened outdoors and then transplanted into raised beds covered with plastic mulch on May 15. Flowering plants were pulled out and discarded up to Aug. 15 at the same time that outstanding late-flowering plants were being flagged. Seed of the most promising late-flowering plants was collected from Sept. 27 through Oct. 3 and then cleaned and stored at 4°C. There were a total of 64 late-flowering selections.

2001 Season

The 64 late-flowering selections (LFS) from the previous season and 3 checks (‘Astro’, “arugula,” and “cultivated arugula” from the Italian commercial source Florisilva) were planted on April 17 in the greenhouse under natural light and seedlings field transplanted into raised beds covered with plastic mulch on May 15. Plots had two rows of 9 plants each spaced 60 cm apart. Of 1,152 plants evaluated, 97.7% were discarded due to early flowering or poor appearance and 27 outstanding late-flowering plants (2.3%) harvested on Sept. 12, cleaned and stored at 4°C.

Days to Flower Variability, 2001

To test the variability for days to flower (DTF) and selection effectiveness for late-flowering, arugula seed from the Italian source Detassis (total surviving population of 1664) and the LFS’s from 2000 (total surviving population of 178) were planted in 128-cell trays in the greenhouses of the Department of Horticulture and Landscape Architecture on Jan. 10, 2001. Plants in the trays were subjected daily to 16 hr of incandescent light (110 to 140 mmol m⁻² s⁻¹) immediately after germination for the next 3 months. Plastic flats were placed underneath the plug trays and fertigated as needed. The number of plants flowering (at least one flower open) was recorded daily. After 65 days the remaining non-flowering plants were transplanted to 10 cm pots but flowering plants were continually removed. The experiment was terminated on Apr. 11, 91 days after planting.

At the end of the experiment, nine late-flowering greenhouse selections from the “cultivated arugula” (Detassis) and one from the 2001 LFS survived. Self-pollinations (open flower and bud) and intercrosses were made among the selections.

Field Evaluation of Late-flowering Selections, 2001

Seventeen LFS selections and three checks (‘Astro’, “arugula,” and the “cultivated arugula” from Florisilva) were evaluated in a grower’s field in Rockville, Indiana in 2001. The experiment was planted in a randomized complete block design with three replications on April 22, 2001. Plots were 0.9 m by 1.2 m and had 3 rows separated 15 cm from each other. Seed was planted with a hand vegetable seeder using a “radish” plate and the appropriate speed to drop 4–6 seeds per inch. Plots were grown organically and weeds controlled by hand. Water was supplied through a drip irrigation system. Plots were harvested on May 19, cutting the plants about 2 cm above ground. The plants were allowed to regrow and then harvested again on June 8, 2001.

USDA Germplasm Collection

To identify sources for late flowering and other horticultural characteristics, the *Eruca sativa* germplasm collection (163 accessions) from the USDA along with three entries (two of cultivated arugula and one of wild
arugula) from Italian seed sources (Detassis, and Florsilva) were planted in the greenhouses on June 7, 2001 (Fig. 2). There were 128 seedlings of most accessions in the USDA collection and 256 of the commercial sources. The young plants were exposed to 16 hr of incandescent light for two months.

The young plants were exposed to 16 hr of incandescent light for two months. We detected differences in pungency of selections but this could not be extensively investigated because of the use of pesticides for insect control in the greenhouse.

Although our tests are preliminary we have demonstrated that selection for late blooming can be achieved using mass selection. For example, after a single cycle of selection for late flowering, only 9% of seedlings derived from late-flowering selections flowered within two months from planting, as compared to 35% of the original cultivar. Furthermore, in greenhouse evaluations, original selections proved to be 15% later than a comparable Italian cultivar (see below).

Comparison of Late-flowering Selections with an Italian Source

In the greenhouse experiment planted on Jan. 10, 2001, flowering in cultivated arugula from Detassis was compared with seedlings from late-flowering selections (Fig. 3). In arugula from Detassis, the first plants flowered 31 days after planting. Of a total evaluated popu-

![Fig. 2. Arugula plants of the USDA germplasm collection growing in the greenhouse. Notice differences in leaf size and shape.](image)

RESULTS

Late-flowering Selection

A commercial source of cultivated arugula from Detassis showed large variability for days to first flower (Fig. 3), leaf patterns (Fig. 4) and stem color, and branching habit (Fig. 5). This variability is expected to permit progress using mass selection in the field. However, low natural seed set in the greenhouse makes green-

![Fig. 3. Comparison of flowering distribution between the Italian source Detassis and late-flowering selections (LFS) of arugula.](image)

![Fig. 4. Leaf morphology variation in arugula.](image)

![Fig. 5. Stem color (green to purple) and branching variation in arugula.](image)
lation of 1664 plants, half flowered by 59 DAP. After 91 days, when the experiment was terminated, 14 non-flowering plants (0.8%) remained. The standard deviation of DTF for flowering plants was 12.3 days. In contrast, plants derived from late-flowering selections (LFS) started flowering at 47 days, 16 days later than the plants from Detassis. Of a total population of 178 plants, half flowered at 68 DAP. After 91 days, 6 plants (3.3%) remained. The standard deviation of DTF for flowering plants was 10.7 days.

Genetic gain cannot be calculated because the initial source population was not directly tested but our data indicates a mean genetic difference of 9 days for lateness of the selected population with the Italian source. Assuming no difference in the two populations (Johnny’s and Italian), this would indicate a 15% gain after one cycle.

Nine non-flowering plants from the Italian source and one from the LFS survived transplanting to 8-L pots. At flowering in June, intercrosses and self-pollinations were made. Intercrosses produced seed but only bud pollinations produced seed from self-pollination, indicating that self-incompatibility is present in arugula and that it could be overcome by bud pollination. Selfings and hybrids are presently under evaluation.

USDA Germplasm Collection

Of the 163 lines received, five were excluded because of poor germination. The 158 lines remaining were from 15 different countries, but mostly from Pakistan (Table 1). Most entries had a rather low mean and small range for DTF. Pakistan, with the largest number of lines, had a low mean and range suggesting that this population is quite uniform for this trait. India, represented by 15 lines, had the highest mean (days to 50% flowering) and the widest range and appeared to be the best source of late flowering in the USDA germplasm. However, the two Italian commercial sources of cultivated arugula used as a control were by far the best performers for late flowering. They had a combined mean of 103 DTF, which is almost twice the 55 days mean of the USDA collection. It appears that for centuries Italian growers have been effectively selecting for late flowering. Despite this selection, there appears to be considerable variability in Italian arugula populations to make further progress.

Field Evaluation of Late-flowering Selections

The field trial of 17 LFS and 3 checks was harvested at a very young stage on May 19 and the regrowth on June 8. However, further harvests were impossible because the entire trial flowered (Fig 6). There was a significant difference in yield between entries for first harvest, second harvest, and total harvest but the high coefficient of variation (CV) made mean separation difficult (Table 2). Thus, only the top and lowest entry were significantly different from each other for total yield. The mean yield of the experiment (753 g per plot) is equivalent to a yield of 7.3 tonnes/ha.

Flowering in arugula seems to be influenced by cold temperature (vernalization), long days, and high temperatures. The vernalization effect is based on the observation that volunteer overwintering seedlings, originated from seed left in the field, flowered as tiny plants with only a few leaves in early spring. In this trial, flowering occurred from June 15 to 28 with a mean DTF of 58 days. However, there was no significant difference between lines. The lack of difference between lines may reflect a vernalization effect, because the experiment was planted on April 22, when night temperatures still dropped below 0°C. Cold temperatures may have induced flowering in all the arugula lines and checks, eliminating any genetic differences in photoperiod response. Flowering may have been delayed by the cutting of the plants at the first and second harvests on May 19 and June 8, respectively.

Table 1. Mean and distribution of days to 50% flowering on arugula germplasm, grown under 16 hr photoperiod.

<table>
<thead>
<tr>
<th>Origin</th>
<th>No. of Lines</th>
<th>Days to 50% flowering</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Collection of Eruca sativa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td>3</td>
<td>47</td>
<td>32–73</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>58</td>
<td>39–76</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1</td>
<td>51</td>
<td>35–64</td>
</tr>
<tr>
<td>Czechoslovakia</td>
<td>1</td>
<td>51</td>
<td>35–64</td>
</tr>
<tr>
<td>Egypt</td>
<td>2</td>
<td>52</td>
<td>37–64</td>
</tr>
<tr>
<td>England</td>
<td>2</td>
<td>43</td>
<td>32–73</td>
</tr>
<tr>
<td>Germany</td>
<td>2</td>
<td>57</td>
<td>37–76</td>
</tr>
<tr>
<td>India</td>
<td>13</td>
<td>64</td>
<td>28–150</td>
</tr>
<tr>
<td>Iran</td>
<td>9</td>
<td>47</td>
<td>28–73</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>59</td>
<td>42–76</td>
</tr>
<tr>
<td>Libya</td>
<td>2</td>
<td>57</td>
<td>42–76</td>
</tr>
<tr>
<td>Pakistan</td>
<td>114</td>
<td>48</td>
<td>28–115</td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
<td>71</td>
<td>46–87</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
<td>59</td>
<td>42–80</td>
</tr>
<tr>
<td>Turkey</td>
<td>5</td>
<td>58</td>
<td>32–101</td>
</tr>
<tr>
<td>Mean and range</td>
<td></td>
<td>55</td>
<td>28–150</td>
</tr>
<tr>
<td>Commercial sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivated arugula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detassis, Italy</td>
<td>1</td>
<td>109</td>
<td>53–156</td>
</tr>
<tr>
<td>Florsilva, Italy</td>
<td>1</td>
<td>98</td>
<td>53–150</td>
</tr>
<tr>
<td>Wild arugula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florsilva, Italy</td>
<td>1</td>
<td>63</td>
<td>42–87</td>
</tr>
</tbody>
</table>
Conclusions

Arugula is a promising green for the Midwest with a spicy flavor that can compete with lettuce. Unlike lettuce, arugula is not bitter.

Arugula can be harvested from sequential plantings and it is possible to perform several harvests. Sequential harvest seems to delay flowering. We recommend planting at two to three-week intervals.

Early bolting can be reduced by selection for late flowering. Preliminary results indicate that mass selection for late flowering is effective.

The evaluation of variability of flowering response to 16 hr photoperiod of 158 accessions of the USDA germplasm collection and three Italian cultivars (two cultivated and one “wild”) indicated that the two Italian cultivated cultivars were twice as late as any of the accessions in the collection.

Table 2. First, second and total foliage yield and DTF of late-flowering selections of arugula grown at Rockville, Indiana.

<table>
<thead>
<tr>
<th>Line</th>
<th>First (g/1.08 m²)</th>
<th>Second (g/1.08 m²)</th>
<th>Total (g/1.08 m²)</th>
<th>DTF (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–1</td>
<td>407 a*</td>
<td>561 ab</td>
<td>968 a</td>
<td>57 a</td>
</tr>
<tr>
<td>10–1</td>
<td>316 ab</td>
<td>636 a</td>
<td>952 ab</td>
<td>55 a</td>
</tr>
<tr>
<td>7–4</td>
<td>295 ab</td>
<td>652 a</td>
<td>948 ab</td>
<td>60 a</td>
</tr>
<tr>
<td>10–18</td>
<td>292 ab</td>
<td>614 a</td>
<td>906 ab</td>
<td>57 a</td>
</tr>
<tr>
<td>10–4</td>
<td>389 ab</td>
<td>490 ab</td>
<td>879 ab</td>
<td>60 a</td>
</tr>
<tr>
<td>Arugula⁡</td>
<td>264 abc</td>
<td>601 a</td>
<td>866 ab</td>
<td>61 a</td>
</tr>
<tr>
<td>6–1</td>
<td>311 ab</td>
<td>467 ab</td>
<td>778 ab</td>
<td>56 a</td>
</tr>
<tr>
<td>10–2</td>
<td>296 ab</td>
<td>481 ab</td>
<td>777 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>1–2</td>
<td>307 ab</td>
<td>464 ab</td>
<td>771 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>10–51</td>
<td>246 abc</td>
<td>509 ab</td>
<td>755 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>8–1</td>
<td>210 bc</td>
<td>514 ab</td>
<td>725 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>7–2</td>
<td>355 ab</td>
<td>360 ab</td>
<td>714 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>7–3</td>
<td>273 abc</td>
<td>432 ab</td>
<td>705 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>5–2</td>
<td>281 abc</td>
<td>398 ab</td>
<td>680 ab</td>
<td>57 a</td>
</tr>
<tr>
<td>10–21</td>
<td>230 abc</td>
<td>420 ab</td>
<td>650 ab</td>
<td>57 a</td>
</tr>
<tr>
<td>10–15</td>
<td>309 ab</td>
<td>322 ab</td>
<td>631 ab</td>
<td>57 a</td>
</tr>
<tr>
<td>1–1</td>
<td>269 abc</td>
<td>361 ab</td>
<td>630 ab</td>
<td>59 a</td>
</tr>
<tr>
<td>Italian⁣</td>
<td>272 abc</td>
<td>352 ab</td>
<td>624 ab</td>
<td>55 a</td>
</tr>
<tr>
<td>Astro⁢</td>
<td>100 c</td>
<td>520 ab</td>
<td>620 ab</td>
<td>55 a</td>
</tr>
<tr>
<td>10–6</td>
<td>244 abc</td>
<td>246 b</td>
<td>490 b</td>
<td>59 a</td>
</tr>
<tr>
<td>Mean</td>
<td>283</td>
<td>470</td>
<td>753</td>
<td>58</td>
</tr>
<tr>
<td>CV</td>
<td>34</td>
<td>36</td>
<td>31</td>
<td>6.3</td>
</tr>
</tbody>
</table>

*Johnny’s Selected Seeds, USA
⁡Florsilva Seed Company, Italy
⁢Mean separation by Duncan’s multiple range test
⁣DTF = Days to flower

References

Gerard(e), J. 1597. Herball or general historie of plants.

Gunther, R.T. 1933. The Greek herbal of Dioscorides,
Illustrated by a Byzantine, A.D. 512; Englished by
York.

The winter season is always a challenge for plant growers to be able to protect their perennials that are in pots. Potted perennials are easier to divide and propagate as they can easily be moved into a humid greenhouse during the summer months. The best reason for keeping perennials potted of course is to have them ready to sell for any occasion. There is a cost for this convenience. The need to over-winter these perennials that are at a high risk for winter injury. The winter injury of these plants is most often to occur as a result of the rapid freezing of the root system. The challenge is not to stop the freezing of the pot but to slow it's freezing. I potted some fall bulbs that I did not sell one fall. I learned the hard way about hardy plants if not properly protected. When they thawed in the spring they turned to mush.

I asked a long time grower how he handled the problem of over-wintering plants and he told me about cement blocks and sand. Greenhouse space is not necessary and sometimes unwanted as it can force your plants into growth before they are needed. Most perennial plants do not require a greenhouse for over-wintering. You can save that expensive space for more tender plants and increase your inventory.

Cement blocks are a useful addition when placed end to end and stacked to provide wind and winter protection. Ground-cover plastic placed under the pots and blocks is a good idea then add sand to fill in the air pockets around the pots. This idea was used by growers in the past to over-winter bulbs for spring forcing. Cement blocks and sand will provide the mass needed to slow the freezing and thawing process during the coldest parts of the winter.

If you would want to use plastic to cover the temporary winter protection you will need to include rat and mouse bait because rodents will also take advantage of this shelter. These rodents feed on your plants and dig out dirt to make nests in your pots. The discovery of their work is always unwelcome in the spring.

The price of cement blocks will vary but the highest price I have seen is $1.23 per block. You need to shop around and find the best price. If you only use the blocks for plant protection you may be able to find blocks that are new but are not good enough for building purposes. This block might be purchased at a reduced price. They are most likely to be found at a business that makes blocks.

Used blocks are not a very good choice because of the old mortar that may still be attached to the edges. This old mortar will make stacking blocks very difficult and it will create an unstable structure.

Dry stacking cement blocks can be fun. When you purchase new blocks there are usually two different types of blocks. One type has square ends and it is used for the corners. There is another type that is placed between the corners and it looks like an H. These blocks measure eight inches high and sixteen inches long. When I place blocks I start at each end with the square blocks and then I fill in with the H blocks. When you stack the blocks one block must be placed on center over the two ends that are meeting beneath it. It is just like stacking bales of hay. That method of stacking provides strength and ties each level together. A stack of three layers is safe when you don’t use mortar. If you want to stack higher than three layers the structure may become a little unstable. A level and solid surface is always the best surface to stack blocks on.

Cement blocks have many uses for a greenhouse. They make a very good investment because of their portable nature. They are great as legs for benches and much more. I use them in the winter to hold down my ground cover plastic so it is not blown in the wind. I also use them to make box cold frames during late March and April for seedling of perennial herbs and flowers. If you cover the entire cold frame with plastic it provides great protection from those frosts in April.

The need for me to purchase additional blocks each fall is as predictable as the changing leaves. They are a low cost way to help me manage a growing plant inventory.
Articles needed for future newsletters

Dave Swaim sent some topics for articles that he thought would be suitable for future newsletters. We need our participants to select one topic to write about using 1000 words or less. Please send those articles to Kent Fenley and you will be published.

We also would like every participant to write an article describing their business and the products that you produce. This is a great way to get your word out and share your vision with others.

Potential Topics

Timing of commercial seeding and propagation to fit the market
How to manage for best appearance and shelf life
Repotting strategies
Best herbs for a butterfly garden
Tips on propagation
How to over-winter perennial herbs
Best sellers 2005
Medicinal uses of standard culinary herbs
Ethnic herbs
Medicinal herbs that are easiest to sell
How to develop a promotional program through the local paper
Using herbs to improve your mood
Growers' production favorites
Nutrient and moisture needs of common herbs
Hard-to-grow herbs
Which herbs do best in a windowsill planter?
Best herbs for a shade garden

Most frequent questions from customers
Hard to answer customer queries
Harvesting and storing herbs for teas
Tips for more effective herbal displays
Ornamental herb varieties
Using flowering herbs as garnishes

Hoosier Botanical on the Web

http://www.hort.purdue.edu/newcrop/6pac/default.html
Send articles to Kent Fenley 3342 N. Co. Rd. 150 W. Greensburg IN. 47240
E-mail- FenleyKent@aol.com or Fenleybill@aol.com

The Horticultural Congress in January

The Indiana Horticulture Congress is January 24 (Monday) to January 26 (Wednesday). A meeting of "Hoosier Botanicals™" is planned for Tuesday January 25. The program is being planned and will be announced later.

Classified Section

Rosemary plants in 2-1/2 inch pots for sale. Order for April. 75 cents each. Common, Beneden Blue, Pink flowering, and Gorizia varieties.
Fenlin Farm Greenhouse Ph.# 812-663-2408