Purdue University Logo
Department of Horticulture and Landscape Architecture
Horticulture Home Page
Agriculture Home Page
Purdue Home Page
HORT640 Home Page
N Use By Plants
Nitrate Assimilation
Ammonia Assimilation
Glu, Gln, Asn, Gly, Ser
Asp, Ala, GABA
Val, Leu, Ileu, Thr, Lys
Pro, Arg, Orn
Non-protein AAs
Sulfate Assimilation
Cys, Met, AdoMet, ACC
His, Phe, Tyr, Tryp
Secondary Products
Onium Compounds
HORT640 - Metabolic Plant Physiology

References, malate dehydrogenase

Abenavoli MR, Sorgona A, Sidari M, Badiani M, Fuggi A. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160: 227-237 (2003).

Agius SC, Rasmusson AG, Moller IM. NAD(P) turnover in plant mitochondria. Aust. J. Plant Physiol. 28: 461-470 (2001).

Agostino A, Heldt HW, Hatch MD. Mitochondrial respiration in relation to photosynthetic C4 acid decarboxylation in C4 species. Aust. J. Plant Physiol. 23: 1-7 (1996).

Agostino A, Jeffrey P, Hatch MD. Amino acid sequence and molecular weight of native NADP malate dehydrogenase from the C4 plant Zea mays. Plant Physiol. 98: 1506-1510 (1992).

Ahuja G, Khattar JS, Sarma TA. Interaction between carbon and nitrogen metabolism during akinete development in the cyanobacterium Anabaena torulosa. J. Basic Microbiol. 48: 125-129 (2008).

Akanuma S, Yamagishi A, Tanaka N, Oshima T. Further improvement of the thermal stability of a partially stabilized Bacillus subtilis 3-isopropylmalate dehydrogenase variant by random and site-directed mutagenesis. Eur. J. Biochem. 260: 499-504 (1999).

Akanuma S, Yamagishi A, Tanaka N, Oshima T. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Protein Sci. 7: 698-705 (1998).

Albe KR, Wright BE. Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. II. Control analysis. J. Biol. Chem. 267: 3106-3114 (1992).

Allers T, Ngo HP, Mevarech M, Lloyd RG. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl. Environ. Microbiol. 70: 943-953 (2004).

Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol. 132: 2205-2217 (2003).

Aoshima M, Oshima T. Stabilization of Escherichia coli isopropylmalate dehydrogenase by single amino acid substitution. Protein Eng. 10: 249-254 (1997).

Arreguin de Lorencez M, Kappeli O. Regulation of gluconeogenic enzymes during the cell cycle of Saccharomyces cerevisiae growing in a chemostat. J. Gen. Microbiol. 133: 2517-2522 (1987).

Ashton AR, Hatch MD. Regulation of C4 photosynthesis: regulation of activation and inactivation of NADP-malate dehydrogenase by NADP and NADPH. Arch. Biochem. Biophys. 227: 416-424 (1983).

Ashton AR, Hatch MD. Regulation of C4 photosynthesis: physical and kinetic- properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays. Arch. Biochem. Biophys. 227: 406-415 (1983).

Ashton AR, Trevanion SJ, Carr PD, Verger D, Ollis DL. Structural basis for the light regulation of chloroplast NADP malate dehydrogenase. Physiol. Plant. 110: 314-321 (2000).

Basha E, Friedrich KL, Vierling E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 281: 39943-39952 (2006).

Basha E, Lee GJ, Demeler B, Vierling E. Chaperone activity of cytosolic small heat shock proteins from wheat. Eur. J. Biochem. 271: 1426-1436 (2004).

Becker B, Holtgrefe S, Jung S, Wunrau C, Kandlbinder A, Baier M, Dietz KJ, Backhausen JE, Scheibe R. Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions. Planta 224: 380-393 (2006).

Berczi A, Moller IM. Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ. 23: 1287-1302 (2000).

Bergkamp RJ, Geerse RH, Verbakel JM, Musters W, Planta RJ. Cloning and disruption of the LEU2 gene of Kluyveromyces marxianus CBS 6556. Yeast 7: 963-970 (1991).

Beyel V, Bruggemann W. Differential inhibition of photosynthesis during pre-flowering drought stress in Sorghum bicolor genotypes with different senescence traits. Physiol. Plant. 124: 249-259 (2005).

Bisbis B, Kevers C, Gaspar T. Atypical TCA cycle and replenishment in a non-photosynthetic fully habituated sugarbeet callus overproducing polyamines. Plant Physiol. Biochem. 35: 363-368 (1997).

Boubekeur S, Bunoust O, Camougrand N, Castroviejo M, Rigoulet M, Guerin B. A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 21044-21048 (1999).

Brisco PR, Cunningham TS, Kohlhaw GB. Cloning, disruption and chromosomal mapping of yeast LEU3, a putative regulatory gene. Genetics 115: 91-99 (1987).

Bykova NV, Keerberg O, Parnik T, Bauwe H, Gardestrom P. Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase. Planta 222: 130-140 (2005).

Byun R, Elbourne LD, Lan R, Reeves PR. Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect. Immun. 67: 1116-1124 (1999).

Chaffei C, Suzuki A, Masclaux-Daubresse C, Ghorbel MH, Gouia H. Implication of glutamate, isocitrate and malate deshydrogenases in nitrogen assimilation in the cadmium-stressed tomato. C. R. Biol. 329: 790-803 (2006).

Chatham JC, Forder JR, Glickson JD, Chance EM. Calculation of absolute metabolic flux and the elucidation of the pathways of glutamate labeling in perfused rat heart by 13C NMR spectroscopy and nonlinear least squares analysis. J. Biol. Chem. 270: 7999-8008 (1995).

Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E. Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 136: 4088-4095 (2004).

Collins N, Merrett MJ. The localization of glycollate-pathway enzymes in Euglena. Biochem. J. 148: 321-328 (1975).

Cortes A, Cascante M, Cardenas ML, Cornish-Bowden A. Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochem. J. 357: 263-268 (2001).

Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol. 148: 786-795 (2008).

Crecelius F, Streb P, Feierabend J. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J. Exp. Bot. 54: 1075-1083 (2003).

Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A. A small family of chloroplast atypical thioredoxins. Plant Physiol. 149: 1240-1250 (2009).

de Jongh WA, Nielsen J. Enhanced citrate production through gene insertion in Aspergillus niger. Metab. Eng. 10: 87-96 (2008).

Des Rosiers C, Di Donato L, Comte B, Laplante A, Marcoux C, David F, Fernandez CA, Brunengraber H. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. J. Biol. Chem. 270: 10027-10036 (1995).

Dever LV, Blackwell RD, Fullwood NJ, Lacuesta M, Leegood RC, Onek LA, Pearson M, Lea PJ. The isolation and characterization of mutants of the C4 photosynthetic pathway. J. Exp. Bot. 46: 1363-1376 (1995).

Dong DF, Peng XX, Yan XL. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol. Plant. 122: 190-199 (2004).

Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G. Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol. 131: 264-275 (2003).

Dutilleul C, Lelarge C, Prioul JL, De Paepe R, Foyer CH, Noctor G. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol. 139: 64-78 (2005).

Eckardt NA. Peroxisomal citrate synthase provides exit route from fatty acid metabolism in oilseeds. Plant Cell 17: 1863-1865 (2005).

Edwards GE, Nakamoto H, Burnell JN, Hatch MD. Pyruvate, Pi-dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light dark regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36: 255-286 (1985).

El-Ghaysh A, Barrett J. Isoenzyme activities of different strains of Cryptosporidium parvum. Vet. Parasitol. 81: 195-200 (1999).

Ellerstrom M, Josefsson LG, Rask L, Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol. Biol. 18: 557-566 (1992).

Escher CL, Widmer F. Lipid mobilization and gluconeogenesis in plants: do glyoxylate cycle enzyme activities constitute a real cycle? A hypothesis. Biol. Chem. 378: 803-813 (1997).

Essenberg RC, Sharma YK. Cloning of genes for proline and leucine biosynthesis from Brucella abortus by functional complementation in Escherichia coli. J. Gen. Microbiol. 139: 87-93 (1993).

Fernandez CA, Des Rosiers C. Modeling of liver citric acid cycle and gluconeogenesis based on 13C mass isotopomer distribution analysis of intermediates. J. Biol. Chem. 270: 10037-10042 (1995).

Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 129: 1308-1319 (2002).

Fisher MT. GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase. Biochemistry (Mosc.) 63: 382-398 (1998).

Fricke W, Pahlich E. Malate: a possible source of error in the NAD glutamate dehydrogenase assay. J. Exp. Bot. 43: 1515-1518 (1992).

Fridlyand LE, Backhausen JE, Scheibe R. Flux control of the malate valve in leaf cells. Arch. Biochem. Biophys. 349: 290-298 (1998).

Fridlyand LE, Scheibe R. Controlled distribution of electrons between acceptors in chloroplasts: a theoretical consideration Biochim. Biophys. Acta 1413: 31-42 (1999).

Fridlyand LE, Scheibe R. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Biosystems 51: 79-93 (1999).

Gallardo F, Miginiac-Maslow M, Sangwan RS, Decottignies P, Keryer E, Dubois F, Bismuth E, Galvez S, Sangwan-Norreel B, Gadal P, et al. Monocotyledonous C4 NADP(+)-malate dehydrogenase is efficiently synthesized, targeted to chloroplasts and processed to an active form in transgenic plants of the C3 dicotyledon tobacco. Planta 197: 324-332 (1995).

Galvez L, Gonzalez EM, Arrese-Igor C. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J. Exp. Bot. 56: 2551-2561 (2005).

Geck MK, Kirsch JF. A novel, definitive test for substrate channeling illustrated with the aspartate aminotransferase/malate dehydrogenase system. Biochemistry 38: 8032-8037 (1999).

Gibon Y, Pyl ET, Sulpice R, Lunn JE, Höhne M, Gunther M, Stitt M. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32: 859-874 (2009).

Gietl C, Wimmer B, Adamec J, Kalousek F. A cysteine endopeptidase isolated from castor bean endosperm microbodies processes the glyoxysomal malate dehydrogenase precursor protein. Plant Physiol. 113: 863-871 (1997).

Gomez Ia, Merchan F, Fernandez E, Quesada A. NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling. Plant Mol. Biol. 48: 211-221 (2002).

Gonzalez EM, Galvez L, Arrese-Igor C. Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J. Exp. Bot. 52: 285-293 (2001).

Good AG, Muench DG. Long-term anaerobic metabolism in root tissue. Metabolic products of pyruvate metabolism. Plant Physiol. 101: 1163-1168 (1993).

Grace SC, Logan BA. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112: 1631-1640 (1996).

Green LS, Li Y, Emerich DW, Bergersen FJ, Day DA. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle. J. Bacteriol. 182: 2838-2844 (2000).

Grone T, Kirst GO. Aspects of dimethylsulfoniopropionate effects on enzymes isolated from the marine phytoplankter Tetraselmis subcordiformis (Stein). J. Plant Physiol. 138: 85-91 (1991).

Guex N, Henry H, Flach J, Richter H, Widmer F. Glyoxysomal malate dehydrogenase and malate synthase from soybean cotyledons (Glycine max L.): enzyme association, antibody production and cDNA cloning. Planta 197: 369-375 (1995).

Hagedorn PH, Flyvbjerg H, Moller IM. Modelling NADH turnover in plant mitochondria. Physiol. Plant. 120: 370-385 (2004).

Hanning I, Heldt HW. On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol. 103: 1147-1154 (1993).

Hatch MD, Agostino A. Bilevel disulfide group reduction in the activation of C4 leaf nicotinamide adenine dinucleotide phosphate-malate dehydrogenase. Plant Physiol. 100: 360-366 (1992).

Hatch MD, Tsuzuki M, Edwards GE. Determination of NAD-malic enzyme in leaves of C4 plants: effects of malate dehydrogenase and other factors. Plant Physiol. 69: 483-491 (1982).

Hausler RE, Bailey KJ, Lea PJ, Leegood RC. Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. 3. Aspects of glyoxylate metabolism and effects of glyoxylate on the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta 200: 388-396 (1996).

Hayes JE, Ma JF. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. J. Exp. Bot. 54: 1753-1759 (2003).

Hoang TT, Schweizer HP. Identification and genetic characterization of the Pseudomonas aeruginosa leuB gene encoding 3-isopropylmalate dehydrogenase. Mol. Gen. Genet. 254: 166-170 (1997).

Hoang TT, Williams S, Schweizer HP, Lam JS. Molecular genetic analysis of the region containing the essential Pseudomonas aeruginosa asd gene encoding aspartate-beta-semialdehyde dehydrogenase. Microbiology 143: 899-907 (1997).

Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol. 98: 1105-1114 (1992).

Hong HT, Nose A, Agarie S. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. J. Exp. Bot. 55: 2201-2211 (2004).

Hong HT, Nose A, Agarie S, Yoshida T. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III. J. Exp. Bot. 59: 1819-1827 (2008).

Hongo K, Hirai H, Uemura C, Ono S, Tsunemi J, Higurashi T, Mizobata T, Kawata Y. A novel ATP/ADP hydrolysis activity of hyperthermostable group II chaperonin in the presence of cobalt or manganese ion. FEBS Lett. 580: 34-40 (2006).

Howell DM, Graupner M, Xu H, White RH. Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J. Bacteriol. 182: 5013-5016 (2000).

Hsu YP, Kohlhaw GB, Niederberger P. Evidence that alpha-isopropylmalate synthase of Saccharomyces cerevisiae is under the "general" control of amino acid biosynthesis. J. Bacteriol. 150: 969-972 (1982).

Hu Y, Cooper TG, Kohlhaw GB. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol. Cell Biol. 15: 52-57 (1995).

Hund HK, Bar G, Lingens F. Purification and properties of arogenate dehydrogenase from Actinoplanes missouriensis. Z. Naturforsch. [C] 44: 797-801 (1989).

Husted S, Schjoerring JK. Apoplastic pH and ammonium concentration in leaves of Brassica napus L. Plant Physiol. 109: 1453-1460 (1995).

Iannetta PP, Escobar NM, Ross HA, Souleyre EJ, Hancock RD, Witte CP, Davies HV. Identification, cloning and expression analysis of strawberry (Fragaria x ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiol. Plant. 121: 15-26 (2004).

Igamberdiev AU, Bykova NV, Lea PJ, Gardestrom P. The role of photorespiration in redox and energy balance of photosynthetic plant cells: A study with a barley mutant deficient in glycine decarboxylase. Physiol. Plant. 111: 427-438 (2001).

Igamberdiev AU, Shen T, Gardestrom P. Function of mitochondria during the transition of barley protoplasts from low light to high light. Planta 224: 196-204 (2006).

Imada K, Inagaki K, Matsunami H, Kawaguchi H, Tanaka H, Tanaka N, Namba K. Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism. Structure 6: 971-982 (1998).

Jackson SD, Sonnewald U, Willmitzer L. Cloning and expression analysis of beta-isopropylmalate dehydrogenase from potato. Mol. Gen. Genet. 236: 309-314 (1993).

Jaindl M, Popp M. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation. Biochem. Biophys. Res. Commun. 345: 761-765 (2006).

Jarai G, Yagmai B, Fu YH, Marzluf GA. Regulation of branched-chain amino acid biosynthesis in Neurospora crassa: cloning and characterization of the leu-1 and ilv-3 genes. Mol. Gen. Genet. 224: 383-388 (1990).

Jenkins CLD, Anderson LE, Hatch MD. NADP-malate dehydrogenase from Zea mays leaves: amino acid composition and thiol content of active and inactive forms. Plant Sci. 45: 1-7 (1986).

Jiao JA, Echevarria C, Vidal J, Chollet R. Protein turnover as a component in the light dark regulation of phosphoenolpyruvate carboxylase protein serine kinase activity in C4 plants. Proc. Natl. Acad. Sci. U.S.A. 88: 2712-2715 (1991).

Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM. Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol. Plant. 131: 527-541 (2007).

Kagawa T, Hatch MD. Regulation of C4 photosynthesis: characterization of a protein factor mediating activation and inactivation of NADP-malate dehydrogenase. Arch. Biochem. Biophys. 184: 290-297 (1977).

Kalinowski A, Radlowski M, Bartkowiak S. Maize pollen enzymes after two-dimensional polyacrylamide gel electrophoresis in the presence or absence of sodium dodecyl sulfate. Electrophoresis 23: 138-143 (2002).

Khan MM, Jan A, Karibe H, Komatsu S. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol. Biol. 58: 27-40 (2005).

Kim DJ, Smith SM. Expression of a single gene encoding microbody NAD-malate dehydrogenase during glyoxysome and peroxisome development in cucumber. Plant Mol. Biol. 26: 1833-1841 (1994).

Kim K, Portis AR Jr. Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol. 46: 522-530 (2005).

Kindl H. Fatty acid degradation in plant peroxisomes: function and biosynthesis of the enzymes involved. Biochimie 75: 225-230 (1993).

Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186: 1769-1784 (2004).

Kumar N, Kumar S, Vats SK, Ahuja PS. Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynth. Res. 88: 63-71 (2006).

Laisk A, Eichelmann H, Oja V. C3 photosynthesis in silico. Photosynth. Res. 90: 45-66 (2006).

Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R. Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol. 48: 1575-1588 (2007).

Le Roux MR, Khan S, Valentine AJ. Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytol. 177: 956-964 (2008).

Leegood RC. The regulation of C4 photosynthesis. Adv. Bot. Res. 26: 251-316 (1997).

Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M. Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett. 543: 87-92 (2003).

Lemaire SD, Quesada A, Merchan F, Corral JM, Igeno MI, Keryer E, Issakidis-Bourguet E, Hirasawa M, Knaff DB, Miginiac-Maslow M. NADP-malate dehydrogenase from unicellular green alga Chlamydomonas reinhardtii. A first step toward redox regulation? Plant Physiol. 137: 514-521 (2005).

Lembert N, Idahl LA. Alpha-ketoisocaproate is not a true substrate for ATP production by pancreatic beta-cell mitochondria. Diabetes 47: 339-344 (1998).

Li XF, Ma JF, Matsumoto H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol. 123: 1537-1544 (2000).

Liang Z, Yu C, Huang AH. Conversion of glycerate to serine in intact spinach leaf peroxisomes. Arch. Biochem. Biophys. 233: 393-401 (1984).

Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus). Physiol. Plant. 120: 575-584 (2004).

Lin H, Bennett GN, San KY. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab. Eng. 7: 337-352 (2005).

Liu YJ, Norberg FE, Szilágyi A, De Paepe R, Akerlund HE, Rasmusson AG. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Plant Cell Physiol. 49: 251-263 (2008).

Lopez M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J. Plant Physiol. 165: 641-650 (2008).

Lu P, Davis BP, Hendrick J, Jeffries TW. Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph. Appl. Microbiol. Biotechnol. 49: 141-146 (1998).

Lunn JE, Agostino A, Hatch MD. Regulation of NADP-malate dehydrogenase in C4 plants: activity and properties of maize thioredoxin m and the significance of non-active site thiol groups. Aust. J. Plant Physiol. 22: 577-584 (1995).

Lunzer M, Miller SP, Felsheim R, Dean AM. The biochemical architecture of an ancient adaptive landscape. Science 310: 499-501 (2005).

MacKintosh C, Coggins J, Cohen P. Plant protein phosphatases: subcellular distribution, detection of protein phosphatase 2C and identification of protein phosphatase 2A as the major quinate dehydrogenase phosphatase. Biochem. J. 273: 733-738 (1991).

Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW. Examination of primary metabolic pathways in a murine hybridoma with C-13 nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 44: 563-585 (1994).

Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinoia E. Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213: 534-542 (2001).

Matsunami H, Kawaguchi H, Inagaki K, Eguchi T, Kakinuma K, Tanaka H. Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans. Biosci. Biotechnol. Biochem. 62: 372-373 (1998).

Mattana M, Biazzi E, Consonni R, Locatelli F, Vannini C, Provera S, Coraggio I. Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiol. Plant. 125: 212-223 (2005).

Mattarelli P, Biavati B. L-Leucine auxotrophy in Bifidobacterium globosum. New Microbiol. 22: 73-76 (1999).

Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL. NMR spectroscopy based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 142: 1759-1770 (2006).

McGonigle B, Nelson T. C4 isoform of NADP-malate dehydrogenase. cDNA cloning and expression in leaves of C4, C3, and C3-C4 intermediate species of Flaveria. Plant Physiol. 108: 1119-1126 (1995).

Meijer S, Otero J, Olivares R, Andersen MR, Olsson L, Nielsen J. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger. Metab. Eng. 11: 107-116 (2009).

Meister M, Agostino A, Hatch MD. The roles of malate and aspartate in C4 photosynthetic metabolism of Flaveria bidentis (L). Planta 199: 262-269 (1996).

Meyer Y, Verdoucq L, Vignols F. Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci. 4: 388-394 (1999).

Miccheli A, Tomassini A, Puccetti C, Valerio M, Peluso G, Tuccillo F, Calvani M, Manetti C, Conti F. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie 88: 437-448 (2006).

Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP. Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J. 15: 173-184 (1998).

Miyazaki J, Asada K, Fushinobu S, Kuzuyama T, Nishiyama M. Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: involvement of hydrophobic dimer-dimer interaction in extremely high thermotolerance. J. Bacteriol. 187: 6779-6788 (2005).

Moons A, Valcke R, Van Montagu M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant J. 15: 89-98 (1998).

Morgunov I, Srere PA. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J. Biol. Chem. 273: 29540-29544 (1998).

Motono C, Yamagishi A, Oshima T. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the thermophile Thermus thermophilus and its mesophilic counterpart from Escherichia coli. Biochemistry 38: 1332-1337 (1999).

Muench DG, Archibold OW, Good AG. Hypoxic metabolism in wild rice (Zizania-palustris): enzyme-induction and metabolite production. Physiol. Plant. 89: 165-171 (1993).

Nemeth A, Svingor A, Pocsik M, Dobo J, Magyar C, Szilagyi A, Gal P, Zavodszky P. Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Lett. 468: 48-52 (2000).

Neuburger M, Douce R. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim. Biophys. Acta 589: 176-189 (1980).

Nikolopoulos D, Manetas Y. Compatible solutes and in vitro stability of Salsola soda enzymes: proline incompatibility. Phytochemistry 30: 411-413 (1991).

Nishiyama M, Kukimoto M, Beppu T, Horinouchi S. An operon encoding aspartokinase and purine phosphoribosyltransferase in Thermus flavus. Microbiology 141: 1211-1219 (1995).

Nissen TL, Schulze U, Nielsen J, Villadsen J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143: 203-218 (1997).

No authors listed. Isozyme analysis in a genetic collection of amaranths (Amaranthus L.). Genetika 41: 1681-1687 (2005).

Numata K, Hayashiiwasaki Y, Yutani K, Oshima T. Studies on interdomain interaction of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus, by constructing chimeric enzymes. Extremophiles 3: 259-262 (1999).

Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AM, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol. 137: 611-622 (2005).

Nurachman Z, Akanuma S, Sato T, Oshima T, Tanaka N. Crystal structures of 3-isopropylmalate dehydrogenases with mutations at the C-terminus: crystallographic analyses of structure-stability relationships. Protein Eng. 13: 253-258 (2000).

O'Flaherty M, O'Carra P, McMahon M, Mulcahy P. A "stripping" ligand tactic for use with the kinetic locking-on strategy: its use in the resolution and bioaffinity chromatographic purification of NAD(+)-dependent dehydrogenases. Protein Expr. Purif. 16: 424-431 (1999).

Obungu VH, Kiaira JK, Njogu RM, Olembo NK. Catabolism of proline by procyclic culture forms of Trypanosoma congolense. Comp. Biochem. Physiol. [B] 123: 59-65 (1999).

Oesterhelt C, Klocke S, Holtgrefe S, Linke V, Weber AP, Scheibe R. Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Plant Cell Physiol. 48: 1359-1373 (2007).

Oultram JD, Loughlin M, Walmsley R, Gunnery SM, Minton NP. The nucleotide sequence of genes involved in the leucine biosynthetic pathway of Clostridium pasteurianum. DNA Seq. 4: 105-111 (1993).

Ovadi J, Srere PA. Macromolecular compartmentation and channeling. Int. Rev. Cytol. 192: 255-280 (2000).

Panuccio MR, Sidari M, Muscolo A. Effects of different salt concentrations and pH conditions on growth of Pennisetum clandestinum Hochst. (Kikuyu grass). Fresenius Environ. Bull. 11: 295-299 (2002).

Park LC, Gibson GE, Bunik V, Cooper AJ. Inhibition of select mitochondrial enzymes in PC12 cells exposed to S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. Biochem. Pharmacol. 58: 1557-1565 (1999).

Pastore D, Di Pede S, Passarella S. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport. Plant Physiol. 133: 2029-2039 (2003).

Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J. Exp. Bot. 58: 195-210 (2007).

Patek M, Hochmannova J, Jelinkova M, Nesvera J, Eggeling L. Analysis of the leuB gene from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 50: 42-47 (1998).

Pedersen H, Carlsen M, Nielsen J. Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain. Appl. Environ. Microbiol. 65: 11-19 (1999).

Pesti M, Vagvolgyi CS, Papp T, Nagy A, Novak A. Variation of isoenzyme and RAPD patterns in Candida albicans morphological mutants with altered colony ultrastructure. Acta Biol. Hung. 52: 289-298 (2001).

Pike CS, Grieve J, Badger MR, Price GD. Thermoprotective properties of small heat shock proteins from rice, tomato and Synechocystis sp PCC6803 overexpressed in, and isolated from, Escherichia coli. Aust. J. Plant Physiol. 28: 1219-1229 (2001).

Pines O, Shemesh S, Battat E, Goldberg I. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 248-255 (1997).

Pitson SM, Mendz GL, Srinivasan S, Hazell SL. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260: 258-267 (1999).

Pleite R, Pike MJ, Garces R, Martinez-Force E, Rawsthorne S. The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos. J. Exp. Bot. 56: 1297-1303 (2005).

Podesta FE, Iglesias AA, Andreo CS. Oligomeric enzymes in the C4 pathway of photosynthesis. Photosynth. Res. 26: 161-170 (1990).

Ponce-Valadez M, Watkins CB. Fermentation and malate metabolism in response to elevated CO2 concentrations in two strawberry cultivars. Physiol. Plant. 134: 121-133 (2008).

Poole P, Allaway D. Carbon and nitrogen metabolism in Rhizobium. Adv. Microb. Physiol. 43: 117-163 (2000).

Pracharoenwattana I, Cornah JE, Smith SM. Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J. 50: 381-390 (2007).

Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. J. Exp. Bot. 57: 2075-2085 (2006).

Rajesh A, Arumugam R, Venkatesalu V. Responses of Ceriops roxburghiana to NaCl stress. Biol. Plant. 42: 143-148 (1999).

Rebeille F, Hatch MD. Regulation of NADP-malate dehydrogenase in C4 plants: relationship among enzyme activity, NADPH to NADP ratios, and thioredoxin redox states in intact maize mesophyll chloroplasts. Arch. Biochem. Biophys. 249: 171-179 (1986).

Rebeille F, Hatch MD. Regulation of NADP-malate dehydrogenase in C4 plants: effect of varying NADPH to NADP ratios and thioredoxin redox state on enzyme activity in reconstituted systems. Arch. Biochem. Biophys. 249: 164-170 (1986).

Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ. 28: 709-718 (2005).

Rhode DJ, Martin BL. Localized structural effects of electrostati cinteractions in a thermostable enzyme. Biochem. Biophys. Res. Commun. 258: 179-183 (1999).

Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of Arabidopsis thaliana lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol. 148: 1655-1667 (2008).

Romanowska E, Igamberdiev AU, Parys E, Gardestrom P. Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol. Plant. 116: 148-154 (2002).

Rondeau P, Rouch C, Besnard G. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann. Bot. (Lond.) 96: 1307-1314 (2005).

Rowsell EV, Carnie JA, Wahbi SD, Al-Tai AH, Rowsell KV. L-Serine dehydratase and L-serine-pyruvate aminotransferase activities in different animal species. Comp. Biochem. Physiol. [B] 63: 543-555 (1979).

Ruelland E, Miginiac-Maslow M. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci. 4: 136-141 (1999).

Ruuska SA, Andrews TJ, Badger MR, Price GD, von Caemmerer S. The role of chloroplast electron transport and metabolites in modulating Rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol. 122: 491-504 (2000).

Ruuska SA, Schwender J, Ohlrogge JB. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136: 2700-2709 (2004).

Sabar M, De Paepe R, de Kouchkovsky Y. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol. 124: 1239-1250 (2000).

Sanyal SC, Bhattacharyya D, Das Gupta C. The folding of dimeric cytoplasmic malate dehydrogenase. Equilibrium and kinetic studies. Eur. J. Biochem. 269: 3856-3866 (2002).

Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Oquist G, Huner NP, Gardestrom P. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta 214: 295-303 (2001).

Savitch LV, Pocock T, Krol M, Wilson KE, Greenberg BM, Huner NPA. Effects of growth under UVA radiation on CO2 assimilation, carbon partitioning, PSII photochemistry and resistance to UVB radiation in Brassica napus cv. Topas. Aust. J. Plant Physiol. 28: 203-212 (2001).

Scheibe R. Malate valves to balance cellular energy supply. Physiol. Plant. 120: 21-26 (2004).

Schiavon M, Ertani A, Nardi S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J. Agric. Food Chem. 56: 11800-11808 (2008).

Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD. Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ. 27: 725-735 (2004).

Schuhmann H, Huesgen PF, Gietl C, Adamska I. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis thaliana. Plant Physiol. 148: 1847-1856 (2008).

Schulze J, Temple G, Temple SJ, Beschow H, Vance CP. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. (Lond.) 98: 731-740 (2006).

Schwab KB, Gaff DF. Influence of compatible solutes on soluble enzymes from desiccation-tolerant Sporobolus stapfianus and desiccation-sensitive Sporobolus pyramidalis. J. Plant Physiol. 137: 208-215 (1990).

Schwenn JD, Schriek U. PAPS-reductase from Escherichia coli: characterization of the enzyme as probe for thioredoxins. Z. Naturforsch. [C] 42: 93-102 (1987).

Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228: 1055-1066 (2008).

Sharma PK, Hall DO. Effect of high-irradiance stress on primary photochemistry and light regulated enzymes of photosynthetic carbon metabolism. J. Plant Physiol. 139: 719-726 (1992).

Shorrosh BS, Dixon RA. Molecular characterization and expression of an isocitrate dehydrogenase from alfalfa (Medicago sativa L). Plant Mol. Biol. 20: 801-807 (1992).

Simon JP, Hatch MD. Temperature effects on the activation and inactivation of pyruvate, Pi dikinase in two populations of the C-4 weed Echinochloa crus-galli (barnyard grass) from sites of contrasting climates. Aust. J. Plant Physiol. 21: 463-473 (1994).

Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J. 23: 703-713 (2000).

Sommer C, Thonke B, Popp M. The compatibility of D-pinitol and 1D-1-O-methyl-muco-inositol with malate dehydrogenase activity. Bot. Acta 103: 270-273 (1990).

Sriram G, Fulton DB, Shanks JV. Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by (13)C labeling and comprehensive bondomer balancing. Phytochemistry 68: 2243-2257 (2007).

Streb P, Josse EM, Gallouet E, Baptist F, Kuntz M, Cornic G. Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ. 28: 1123-1135 (2005).

Suzuki T, Moriyama H, Hirose R, Sakurai M, Tanaka N, Oshima T. Crystallization and preliminary X-ray studies on the hyperstable 3-isopropylmalate dehydrogenase from the thermoacidophilic archaeon Sulfolobus sp. strain 7. Acta Crystallogr. D. Biol. Crystallogr. 54: 444-445 (1998).

Takahashi N, Yamada T. Pathways for amino acid metabolism by Prevotella intermedia and Prevotella nigrescens. Oral Microbiol. Immunol. 15: 96-102 (2000).

Tamakoshi M, Yamagishi A, Oshima T. The organization of the leuC, leuD and leuB genes of the extreme thermophile Thermus thermophilus. Gene 222: 125-132 (1998).

Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H, Miyao M. Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J. Exp. Bot. 59: 1799-1809 (2008).

Temple SJ, Vance CP, Gantt JS. Glutamate synthase and nitrogen assimilation. Trends Plant Sci. 3: 51-56 (1998).

Tian J, Bryk R, Itoh M, Suematsu M, Nathan C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of {alpha}-ketoglutarate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 102: 10670-10675 (2005).

Tompa P, Batke J, Ovadi J, Welch GR, Srere PA. Quantitation of the interaction between citrate synthase and malate dehydrogenase. J. Biol. Chem. 262: 6089-6092 (1987).

Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A. Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. J. Exp. Bot. 59: 1267-1277 (2008).

Trevanion SJ, Ashton AR, Furbank RT. Antisense RNA inhibition of pyruvate, orthophosphate dikinase and NADP malate dehydrogenase in the C-4 plant Flaveria bidentis: analysis of plants with a mosaic phenotype. Aust. J. Plant Physiol. 26: 537-547 (1999).

Trevanion SJ, Furbank RT, Ashton AR. NADP-malate dehydrogenase in the C4 plant Flaveria bidentis. Cosense suppression of activity in mesophyll and bundle-sheath cells and consequences for photosynthesis. Plant Physiol. 113: 1153-1165 (1997).

Tuin LG, Shelp BJ. In situ [C-14]glutamate metabolism by developing soybean cotyledons. 2. The importance of glutamate decarboxylation. J. Plant Physiol. 147: 714-720 (1996).

Van Der Merwe MJ, Osorio S, Moritz T, Nunes-Nesi A, Fernie AR. Decreased mitochondrial activities of malate dehydrogenase and fumarase in Solanum lycopersicum lead to altered root growth and architecture via diverse mechanisms. Plant Physiol. 149: 653-669 (2009).

Van Heerden PDR, Kruger GHJ, Loveland JE, Parry MAJ, Foyer CH. Dark chilling imposes metabolic restrictions on photosynthesis in soybean. Plant Cell Environ. 26: 323-337 (2003).

Verleur N, Elgersma Y, Van Roermund CW, Tabak HF, Wanders RJ. Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae. Eur. J. Biochem. 247: 972-980 (1997).

Vertessy BG, Orosz F, Ovadi J. Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates. Biochim. Biophys. Acta 1078: 236-242 (1991).

Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol. Plant. 133: 584-598 (2008).

Vuillard L, Madern D, Franzetti B, Rabilloud T. Halophilic protein stabilization by the mild solubilizing agents nondetergent sulfobetaines. Anal. Biochem. 230: 290-294 (1995).

Wallon G, Kryger G, Lovett ST, Oshima T, Ringe D, Petsko GA. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J. Mol. Biol. 266: 1016-1031 (1997).

Wallon G, Yamamoto K, Kirino H, Yamagishi A, Lovett ST, Petsko GA, Oshima T. Purification, catalytic properties and thermostability of 3-isopropylmalate dehydrogenase from Escherichia coli. Biochim. Biophys. Acta 1337: 105-112 (1997).

Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65: 1795-1804 (2004).

Wang ED, Holland M. Effect on yeast LEU2 expression of upstream activation sequence from yeast ENO2 gene coding for enolase. Chin. J. Biotechnol. 5: 73-79 (1989).

Wang R, Guegler K, LaBrie ST, Crawford NM. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12: 1491-1510 (2000).

Wang YH, Garvin DF, Kochian LV. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127: 345-359 (2001).

Wendisch VF, de Graaf AA, Sahm H. Accurate determination of C-13 enrichments in nonprotonated carbon atoms of isotopically enriched amino acids by H-1 nuclear magnetic resonance. Anal. Biochem. 245: 196-202 (1997).

Widmann M, Christen P. Comparison of folding rates of homologous prokaryotic and eukaryotic proteins. J. Biol. Chem. 275: 18619-18622 (2000).

Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL. Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl. Environ. Microbiol. 75: 981-990 (2009).

Williams BA, Sillaots S, Tsang A, Storms R. Isolation by genetic complementation of two differentially expressed genes for beta-isopropylmalate dehydrogenase from Aspergillus niger. Curr. Genet. 30: 305-311 (1996).

Witt U, Luhrs R, Buck F, Lembke K, Gruneberg-Seiler M, Abel W. Mitochondrial malate dehydrogenases in Brassica napus: altered protein patterns in different nuclear mitochondrial combinations. Plant Mol. Biol. 35: 1015-1021 (1997).

Wittenbach VA, Teaney PW, Hanna WS, Rayner DR, Schloss JV. Herbicidal activity of an isopropylmalate dehydrogenase inhibitor. Plant Physiol. 106: 321-328 (1994).

Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol. 45: 18-27 (2004).

Yu C, Huang AH. Conversion of serine to glycerate in intact spinach leaf peroxisomes: role of malate dehydrogenase. Arch. Biochem. Biophys. 245: 125-133 (1986).

Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766-2777 (2008).

Zhang X, Vincent AS, Halliwell B, Wong KP. A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279: 43035-43045 (2004).

Zhou S, Sauvé R, Thannhauser TW. Proteome changes induced by aluminium stress in tomato roots. J. Exp. Bot. 60: 1849-1857 (2009).

Zientz E, Bongaerts J, Unden G. Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J. Bacteriol. 180: 5421-5425 (1998).

Number of references = 230

| PubMed Search | Entrez Protein Search | ISI Web of Knowledge Search | Scirus Search |

David Rhodes
Department of Horticulture & Landscape Architecture
Horticulture Building
625 Agriculture Mall Drive
Purdue University
West Lafayette, IN 47907-2010
Last Update: 10/01/09