Purdue University Logo
Department of Horticulture and Landscape Architecture
Horticulture Home Page
Agriculture Home Page
Purdue Home Page
HORT640 Home Page
N Use By Plants
Nitrate Assimilation
Ammonia Assimilation
Glu, Gln, Asn, Gly, Ser
Asp, Ala, GABA
Val, Leu, Ileu, Thr, Lys
Pro, Arg, Orn
Non-protein AAs
Sulfate Assimilation
Cys, Met, AdoMet, ACC
His, Phe, Tyr, Tryp
Secondary Products
Onium Compounds
HORT640 - Metabolic Plant Physiology

References, metabolic and engineer

Aarnikunnas J, Von Weymarn N, Ronnholm K, Leisola M, Palva A. Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate. Biotechnol. Bioeng. 82: 653-663 (2003).

Abdel-Hamid AM, Attwood MM, Guest JR. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147: 1483-1498 (2001).

Abe K, Higuchi T. Selective fermentation of xylose by a mutant of Tetragenococcus halophila defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase. Biosci. Biotechnol. Biochem. 62: 2062-2064 (1998).

Adachi T, Matoba N, Kurata H. BIOCAD project for constructing a biological system in silico. Genome Informatics 12: 284-285 (2001).

Adav SS, Lee DJ, Wang A, Ren N. Functional consortium for hydrogen production from cellobiose: concentration-to-extinction approach. Bioresour. Technol. 100: 2546-2550 (2009).

Adhya S. Leishmania mitochondrial tRNA importers. Int. J. Biochem. Cell Biol. 40: 2681-2685 (2008).

Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10: 594-602 (2005).

Ahrens K, Menzel K, Zeng A, Deckwer W. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. 59: 544-552 (1998).

Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 5: 167-190 (2008).

Akhtar MS, Oki Y, Adachi T. Intraspecific variations of phosphorus absorption and remobilization, P forms, and their internal buffering in Brassica cultivars exposed to a P-stressed environment. J. Integr. Plant Biol. 50: 703-716 (2008).

Akinterinwa O, Khankal R, Cirino PC. Metabolic engineering for bioproduction of sugar alcohols. Curr. Opin. Biotechnol. 19: 461-467 (2008).

Aldor I, Keasling JD. Metabolic engineering of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composition in recombinant Salmonella enterica serovar typhimurium. Biotechnol. Bioeng. 76: 108-114 (2001).

Aldor IS, Keasling JD. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14: 475-483 (2003).

Allen DK, Libourel IG, Shachar-Hill Y. Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ. Apr 22 [Epub ahead of print] (2009).

Allen DK, Shachar-Hill Y, Ohlrogge JB. Compartment-specific labeling information in (13)C metabolic flux analysis of plants. Phytochemistry 68: 2197-2210 (2007).

Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 8: 15-19 (2003).

Allen TE, Palsson BO. Sequence-based analysis of metabolic demands for protein synthesis in prokaryotes. J. Theor. Biol. 220: 1-18 (2003).

Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427: 839-843 (2004).

Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7: 155-164 (2005).

Alper H, Stephanopoulos G. Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl. Microbiol. Biotechnol. 78: 801-810 (2008).

Altaras NE, Cameron DC. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185 (1999).

Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol. Bioeng. 94: 273-295 (2006).

Alvarez R, Liden G. The effect of temperature variation on biomethanation at high altitude. Bioresour. Technol. 99: 7278-7284 (2008).

Andersson C, Helmerius J, Hodge D, Berglund KA, Rova U. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity. Biotechnol. Prog. 25: 116-123 (2009).

Anesiadis N, Cluett WR, Mahadevan R. Dynamic metabolic engineering for increasing bioprocess productivity. Metab. Eng. 10: 255-266 (2008).

Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11: 13-19 (2009).

Antinozzi PA, Berman HK, O'Doherty RM, Newgard CB. Metabolic engineering with recombinant adenoviruses. Annu. Rev. Nutr. 19: 511-544 (1999).

Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9: 68-86 (2007).

Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8: 324-337 (2006).

Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J, Kelleher JK, Stephanopoulos G. Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab. Eng. 9: 277-292 (2007).

Ao P, Lee LW, Lidstrom ME, Yin L, Zhu X. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation. Sheng Wu Gong Cheng Xue Bao 24: 980-994 (2008).

Apse MP, Blumwald E. Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13: 146-150 (2002).

Arai K, Lee K, Berthiaume F, Tompkins RG, Yarmush ML. Intrahepatic amino acid and glucose metabolism in a D-galactosamine-induced rat liver failure model. Hepatology 34: 360-371 (2001).

Aranda-Barradas JS, Delia ML, Riba JP. Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Engineering 22: 219-225 (2000).

Arauzo-Bravo MJ, Shimizu K. Estimation of bidirectional metabolic fluxes from MS and NMR data using positional representations. Genome Inform. Ser. Workshop Genome Inform. 12: 63-72 (2001).

Arcak M, Sontag ED. A passivity-based stability criterion for a class of biochemical reaction networks. Math. Biosci. Eng. 5: 1-19 (2008).

Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198 (2000).

Aristidou AA, San KY, Bennett GN. Metabolic flux analysis of Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch and continuous cultures. Biotechnol. Bioeng. 63: 737-749 (1999).

Aristidou AA, San KY, Bennett GN. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol. Prog. 11: 475-478 (1995).

Arruda P, Kemper EL, Papes F, Leite A. Regulation of lysine catabolism in higher plants. Trends Plant Sci. 5: 324-330 (2000).

Ashihara H, Crozier A. Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci. 6: 407-413 (2001).

Ashihara H, Sano H, Crozier A. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69: 841-856 (2008).

Asur S, Ucar D, Parthasarathy S. An ensemble framework for clustering protein-protein interaction networks. Bioinformatics 23: i29-i40 (2007).

Atlas JC, Nikolaev EV, Browning ST, Shuler ML. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication. IET Syst. Biol. 2: 369-382 (2008).

Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19: 414-419 (2008).

Auernik KS, Cooper CR, Kelly RM. Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr. Opin. Biotechnol. 19: 445-453 (2008).

Bailey JE. Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab. Eng. 3: 111-114 (2001).

Bailey JE. Toward a science of metabolic engineering. Science 252: 1668-1675 (1991).

Bailey JE. Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618 (1999).

Bak S, Olsen CE, Petersen BL, Moller BL, Halkier BA. Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J. 20: 663-671 (1999).

Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolívar F, Gosset G. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell Fact. 8: 19 (2009).

Bally J, Nadai M, Vitel M, Rolland A, Dumain R, Dubald M. Plant physiological adaptations to the massive foreign protein synthesis occurring in recombinant chloroplasts. Plant Physiol. 150: 1474-1481 (2009).

Balsa-Canto E, Alonso AA, Banga JR. Computational procedures for optimal experimental design in biological systems. IET Syst. Biol. 2: 163-172 (2008).

Balsa-Canto E, Peifer M, Banga JR, Timmer J, Fleck C. Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst. Biol. 2: 26 (2008).

Banga JR.. Optimization in computational systems biology BMC Syst. Biol. 2: 47 (2008).

Banta S, Vemula M, Yokoyama T, Jayaraman A, Berthiaume F, Yarmush ML. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats. Biotechnol. Bioeng. 97: 118-137 (2007).

Baptista T, Costa E. Evolution of a multi-agent system in a cyclical environment. Theory Biosci. 127: 141-148 (2008).

Barkovich R, Liao JC. Metabolic engineering of isoprenoids. Metab. Eng. 3: 27-39 (2001).

Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM. SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. Metabolism 47: 484-492 (1998).

Bassie L, Noury M, Lepri O, Lahaye T, Christou P, Capell T. Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing the oat ADC cDNA constitutively. Transgenic Res. 9: 33-42 (2000).

Beard DA, Liang SD, Qian H. Energy balance for analysis of complex metabolic networks. Biophys. J. 83: 79-86 (2002).

Becker J, Klopprogge C, Wittmann C. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb. Cell Fact. 7: 8 (2008).

Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596 (2005).

Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2: 727-738 (2007).

Becker SA, Palsson BO. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5: 8 (2005).

Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4: e1000082 (2008).

Becker SA, Palsson BO. Three factors underlying incorrect in silico predictions of essential metabolic genes. BMC Syst. Biol. 2: 14 (2008).

Becker SA, Price ND, Palsson BO. Metabolite coupling in genome-scale metabolic networks. BMC Bioinformatics 7: 111 (2006).

Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FW, Bouwmeester HJ, Aharoni A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol. 135: 1865-1878 (2004).

Bekaert S, Storozhenko S, Mehrshahi P, Bennett MJ, Lambert W, Gregory JF 3rd, Schubert K, Hugenholtz J, Van Der Straeten D, Hanson AD. Folate biofortification in food plants. Trends Plant Sci. 13: 28-35 (2008).

Belic A, Grabnar I, Karba R, Mrhar A, Irman-Florjanc T, Primozic S. Interdependence of histamine and methylhistamine kinetics: modelling and simulation approach. Comput. Biol. Med. 29: 361-375 (1999).

Ben Zvi MM, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol. J. 6: 403-415 (2008).

Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2: 9 (2009).

Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hagerdal B, Gorwa-Grauslund MF. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25: 835-847 (2008).

Bennett GN, San KY. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9 (2001).

Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, Tsimring LS, Hasty J. Metabolic gene regulation in a dynamically changing environment. Nature 454: 1119-1122 (2008).

Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS. Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnology Bioengineering, 1990. Biotechnol. Bioeng. 102: 1284-1297 (2009).

Berlin J, Fecker LF. Chapter 10. Genetic Engineering of Enzymes Diverting Amino Acids into Secondary Metabolism. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 195-216 (2000).

Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol. Bioeng. 104: 162-180 (2009).

Bernhardt P, O'Connor SE. Opportunities for enzyme engineering in natural product biosynthesis. Curr. Opin. Chem. Biol. 13: 35-42 (2009).

Berrios-Rivera SJ, Bennett GN, San KY. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab. Eng. 4: 230-237 (2002).

Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab. Eng. 4: 217-229 (2002).

Berrios-Rivera SJ, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab. Eng. 4: 238-247 (2002).

Berrios-Rivera SJ, Yang YT, Bennett GN, San KY. Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli. Metab. Eng. 2: 149-154 (2000).

Berry A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol. 14: 250-256 (1996).

Berthiaume F, MacDonald AD, Kang YH, Yarmush ML. Control analysis of mitochondrial metabolism in intact hepatocytes: effect of interleukin-1beta and interleukin-6. Metab. Eng. 5: 108-123 (2003).

Betenbaugh M, Bentley W. Metabolic engineering in the 21st century: meeting global challenges of sustainability and health. Curr. Opin. Biotechnol. 19: 411-413 (2008).

Bhadury P, Wright PC. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219: 561-578 (2004).

Bhattacharya S, Chakrabarti S, Nayak A, Bhattacharya SK. Metabolic networks of microbial systems. Microbial Cell Factories 2: 3 (2003).

Bi C, Rice JD, Preston JF. Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1. Appl. Environ. Microbiol. 75: 395-404 (2009).

Birol G, Undey C, Parulekar SJ, Cinar A. A morphologically structured model for penicillin production. Biotechnol. Bioeng. 77: 538-552 (2002).

Biswas D, Das SK, Roy S. Importance of scaling exponents and other parameters in growth mechanism: an analytical approach. Theory Biosci. 127: 271-276 (2008).

Blackburn MR, Datta SK, Kellems RE. Adenosine deaminase-deficient mice generated using a two-stage genetic engineering strategy exhibit a combined immunodeficiency. J. Biol. Chem. 273: 5093-5100 (1998).

Blume A, Fitzen M, Benie AJ, Peters T. Specificity of ligand binding to yeast hexokinase PII studied by STD-NMR. Carbohydr. Res. 344: 1567-1574 (2009).

Boghigian BA, Pfeifer BA. Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli. Biotechnol. Lett. 30: 1323-1330 (2008).

Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J. 54: 656-669 (2008).

Bolotin A, Mauger S, Malarme K, Ehrlich SD, Sorokin A. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek 76: 27-76 (1999).

Bolten CJ, Heinzle E, Müller R, Wittmann C. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes. J. Microbiol. Biotechnol. 19: 23-36 (2009).

Bonarius HP, Houtman JH, de Gooijer CD, Tramper J, Schmid G. Activity of glutamate dehydrogenase is increased in ammonia-stressed hybridoma cells. Biotechnol. Bioeng. 57: 447-453 (1998).

Bonarius HP, Ozemre A, Timmerarends B, Skrabal P, Tramper J, Schmid G, Heinzle E. Metabolic-flux analysis of continuously cultured hybridoma cells using (13)CO(2) mass spectrometry in combination with (13)C-lactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol. Bioeng. 74: 528-538 (2001).

Bonarius HP, Timmerarends B, de Gooijer CD, Tramper J. Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol. Bioeng. 58: 258-262 (1998).

Bonarius HPJ, Schmid G, Tramper J. Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15: 308-314 (1997).

Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3: 289-300 (2001).

Bonomo J, Warnecke T, Hume P, Marizcurrena A, Gill RT. A comparative study of metabolic engineering anti-metabolite tolerance in Escherichia coli. Metab. Eng. 8: 227-239 (2006).

Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J. Biol. Chem. 283: 25186-25199 (2008).

Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40: 188-199 (2004).

Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722-2735 (2007).

Boulay J-L, Miot S. Plant biotechnology, Biochemical engineering, Web alert. Curr. Opin. Biotechnol. 12: 121 (2001).

Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol. 3: 4 (2009).

Branduardi P, Smeraldi C, Porro D. Metabolically engineered yeasts: 'potential' industrial applications. J. Mol. Microbiol. Biotechnol. 15: 31-40 (2008).

Brautaset T, Petersen SB, Valla S. In vitro determined kinetic properties of mutant phosphoglucomutases and their effects on sugar catabolism in Escherichia coli. Metab. Eng. 2: 104-114 (2000).

Breitling R, Gilbert D, Heiner M, Orton R. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief. Bioinform. 9: 404-421 (2008).

Brincat MC, Gibson DM, Shuler ML. Alterations in Taxol production in plant cell culture via manipulation of the phenylalanine ammonia lyase pathway. Biotechnol. Prog. 18: 1149-1156 (2002).

Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-6472 (2005).

Bro C, Nielsen J. Impact of 'ome' analyses on inverse metabolic engineering. Metab. Eng. 6: 204-211 (2004).

Bro C, Regenberg B, Forster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8: 102-111 (2006).

Broun P. Transcription factors as tools for metabolic engineering in plants. Curr. Opin. Plant Biol. 7: 202-209 (2004).

Buckland BC, Robinson DK, Chartrain M. Biocatalysis for pharmaceuticals--status and prospects for a key technology. Metab. Eng. 2: 42-48 (2000).

Bum Kim H, Smith CP, Micklefield J, Mavituna F. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab. Eng. 6: 313-325 (2004).

Burattini R, Di Nardo F, Casagrande F, Boemi M, Morosini P. Insulin action and secretion in hypertension in the absence of metabolic syndrome: model-based assessment from oral glucose tolerance test. Metabolism 58: 80-92 (2009).

Burbulis IE, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. U.S.A. 96: 12929-12934 (1999).

Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol. J. 6: 819-831 (2008).

Burgard AP, Maranas CD. Review of the enzymes and metabolic pathways (emp) database. Metab. Eng. 3: 193-194 (2001).

Burgard AP, Maranas CD. Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74: 364-375 (2001).

Burgard AP, Maranas CD. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82: 670-677 (2003).

Burns J, Fraser PD, Bramley PM. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62: 939-947 (2003).

Cabrera ME, Saidel GM, Kalhan SC. Lactate metabolism during exercise: analysis by an integrative systems model. Am. J. Physiol. 277: R1522-R1536 (1999).

Cabrera ME, Saidel GM, Kalhan SC. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Ann. Biomed. Eng. 26: 1-27 (1998).

Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ. Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67: 1166-1176 (2006).

Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr. Opin. Plant Biol. 10: 236-244 (2007).

Cakar ZP. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol. J. 4: 992-1002 (2009).

Cakir T, Kirdar B, Ulgen KO. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. 86: 251-260 (2004).

Cakir T, Tacer CS, Ulgen KO. Metabolic pathway analysis of enzyme-deficient human red blood cells. Biosystems 78: 49-67 (2004).

Calik P, Calik G, Taka S, Ozdamar TH. Metabolic flux analysis for serine alkaline protease fermentation by Bacillus licheniformis in a defined medium: effects of the oxygen transfer rate. Biotechnol. Bioeng. 64: 151-167 (1999).

Cameron DC, Chaplen FW. Developments in metabolic engineering. Curr. Opin. Biotechnol. 8: 175-80 (1997).

Cameron DC, Tong IT. Cellular and metabolic engineering. An overview. Appl. Biochem. Biotechnol. 38: 105-140 (1993).

Campos N, Rodriguez-Concepcion M, Sauret-Gueto S, Gallego F, Lois LM, Boronat A. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem. J. 353: 59-67 (2001).

Cannizzaro C, Christensen B, Nielsen J, Stockar U. Metabolic network analysis on Phaffia rhodozyma yeast using (13)C-labeled glucose and gas chromatography-mass spectrometry. Metab. Eng. 6: 340-351 (2004).

Cao Z, Gao H, Liu M, Jiao P. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol. J. 1: 68-74 (2006).

Capell T, Christou P. Progress in plant metabolic engineering. Curr. Opin. Biotechnol. 15: 148-154 (2004).

Carere CR, Sparling R, Cicek N, Levin DB. Third generation biofuels via direct cellulose fermentation. Int. J. Mol. Sci. 9: 1342-1360 (2008).

Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol. Bioeng. 86: 149-162 (2004).

Carlson RP. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23: 1258-1264 (2007).

Carlson RP. Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25: 90-97 (2009).

Carrari F, Urbanczyk-Wochniak E, Willmitzer L, Fernie AR. Engineering central metabolism in crop species: learning the system. Metab. Eng. 5: 191-200 (2003).

Carretero-Paulet L, Cairo A, Botella-Pavia P, Besumbes O, Campos N, Boronat A, Rodriguez-Concepcion M. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62: 683-695 (2006).

Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol. 141: 220-231 (2006).

Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP, Uemura M. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration. Physiol. Plant. 135: 174-184 (2009).

Cha HJ, Wu CF, Valdes JJ, Rao G, Bentley WE. Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol. Bioeng. 67: 565-574 (2000).

Chan C, Berthiaume F, Lee K, Yarmush ML. Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma. Metab. Eng. 5: 1-15 (2003).

Chan C, Berthiaume F, Lee K, Yarmush ML. Metabolic flux analysis of cultured hepatocytes exposed to plasma. Biotechnol. Bioeng. 81: 33-49 (2003).

Chan C, Berthiaume F, Washizu J, Toner M, Yarmush ML. Metabolic pre-conditioning of cultured cells in physiological levels of insulin: generating resistance to the lipid-accumulating effects of plasma in hepatocytes. Biotechnol. Bioeng. 78: 753-760 (2002).

Chan C, Hwang D, Stephanopoulos GN, Yarmush ML, Stephanopoulos G. Application of multivariate analysis to optimize function of cultured hepatocytes. Biotechnol. Prog. 19: 580-598 (2003).

Chang DE, Jung HC, Rhee JS, Pan JG. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl. Environ. Microbiol. 65: 1384-1389 (1999).

Chang DE, Shin S, Rhee JS, Pan JG. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J. Bacteriol. 181: 6656-6663 (1999).

Chang J, Luo J, He G. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phenylpropanoid pathway. Acta Biochim. Biophys. Sin. (Shanghai) 41: 123-130 (2009).

Chang Y, Suthers PF, Maranas CD. Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments. Biotechnol. Bioeng. 100: 1039-1049 (2008).

Chanprateep S, Abe N, Shimizu H, Yamane T, Shioya S. Multivariable control of alcohol concentrations in the production of polyhydroxyalkanoates (PHAs) by Paracoccus denitrificans. Biotechnol. Bioeng. 74: 116-124 (2001).

Chartrain M, Salmon PM, Robinson DK, Buckland BC. Metabolic engineering and directed evolution for the production of pharmaceuticals. Curr. Opin. Biotechnol. 11: 209-214 (2000).

Chassagnole C, Letisse F, Diano A, Lindley ND. Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain. Mol. Biol. Rep. 29: 129-134 (2002).

Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 53-73 (2002).

Chatziioannou A, Palaiologos G, Kolisis FN. Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate. Metab. Eng. 5: 201-210 (2003).

Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55: 2365-2384 (2004).

Chavez-Bejar MI, Lara AR, Lopez H, Hernandez-Chavez G, Martinez A, Ramirez OT, Bolívar F, Gosset G. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis. Appl. Environ. Microbiol. 74: 3284-3290 (2008).

Chemler JA, Koffas MA. Metabolic engineering for plant natural product biosynthesis in microbes. Curr. Opin. Biotechnol. 19: 597-605 (2008).

Chen H, Cai YB, Zhang WJ, Li W. Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour. Technol. 100: 2085-2087 (2009).

Chen J, Zhang W, Tan L, Wang Y, He G. Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol. Adv. 27: 593-598 (2009).

Chen LM, Li KZ, Miwa T, Izui K. Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219: 440-449 (2004).

Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol. Prog. 13: 768-775 (1997).

Chen R, Yap WM, Postma PW, Bailey JE. Comparative studies of Escherichia coli strains using different glucose uptake systems: metabolism and energetics. Biotechnol. Bioeng. 56: 583-590 (1997).

Chen S, Feng D. Novel parameter estimation methods for 11C-acetate dual-input liver model with dynamic PET. IEEE Trans. Biomed. Eng. 53: 967-973 (2006).

Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33: 923-937 (2003).

Chen S, Ho C, Feng D, Chi Z. Tracer kinetic modeling of 11C-acetate applied in the liver with positron emission tomography. IEEE Trans. Med. Imaging 23: 426-432 (2004).

Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5: 250-257 (2002).

Chiang YJ, Stushnoff C, McSay AE. Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in petunia. J. Am. Soc. Hortic. Sci. 130: 605-610 (2005).

Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol. Bioeng. 102: 209-220 (2009).

Chintapakorn Y, Hamill JD. Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol. Biol. 53: 87-105 (2003).

Choi J, Yang KW, Lee TY, Lee SY. New time-scale criteria for model simplification of bio-reaction systems. BMC Bioinformatics 9: 338 (2008).

Choi WJ. Glycerol-based biorefinery for fuels and chemicals. Recent Pat. Biotechnol. 2: 173-180 (2008).

Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD. FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res. 37: W129-W134 (2009).

Chou CJ, Jenney FJ Jr, Adams MW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab. Eng. 10: 394-404 (2008).

Chou IC, Voit EO. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219: 57-83 (2009).

Christensen B, Nielsen J. Metabolic network analysis. A powerful tool in metabolic engineering. Adv. Biochem. Eng. Biotechnol. 66: 209-231 (2000).

Christou P. Rice transformation: bombardment. Plant Mol. Biol. 35: 197-203 (1997).

Chung AJ, Erickson D. Engineering insect flight metabolics using immature stage implanted microfluidics. Lab. Chip 9: 669-676 (2009).

Chung IM, Hong SB, Peebles CA, Kim JA, San KY. Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots. Biotechnol. Prog. 23: 327-332 (2007).

Church GM. From systems biology to synthetic biology. Mol. Syst. Biol. 1: 2005.0032 (2005).

Cloutier M, Bouchard-Marchand E, Perrier M, Jolicoeur M. A predictive nutritional model for plant cells and hairy roots. Biotechnol. Bioeng. 99: 189-200 (2008).

Cloutier M, Chen J, Tatge F, McMurray-Beaulieu V, Perrier M, Jolicoeur M. Kinetic metabolic modelling for the control of plant cells cytoplasmic phosphate. J. Theor. Biol. 259: 118-131 (2009).

Cloutier M, Perrier M, Jolicoeur M. Dynamic flux cartography of hairy roots primary metabolism. Phytochemistry 68: 2393-2404 (2007).

Conrado RJ, Mansell TJ, Varner JD, Delisa MP. Stochastic reaction-diffusion simulation of enzyme compartmentalization reveals improved catalytic efficiency for a synthetic metabolic pathway. Metab. Eng. 9: 355-363 (2007).

Conrado RJ, Varner JD, Delisa MP. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19: 492-499 (2008).

Contador CA, Rizk ML, Asenjo JA, Liao JC. Ensemble modeling for strain development of L-lysine-producing Escherichia coli. Metab. Eng. 11: 221-233 (2009).

Converti A, Perego P. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 (2002).

Cordier H, Mendes F, Vasconcelos I, Francois JM. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab. Eng. 9: 364-378 (2007).

Cotter JL, Chinn MS, Grunden AM. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess. Biosyst. Eng. 32: 369-380 (2009).

Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96 (2004).

Covert MW, Palsson BO. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277: 28058-28064 (2002).

Covert MW, Palsson BO. Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221: 309-325 (2003).

Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26: 179-186 (2001).

Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 73-88 (2001).

Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24: 2044-2050 (2008).

Crowther GJ, Kosaly G, Lidstrom ME. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190: 5057-5062 (2008).

Cunningham FX Jr, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557-583 (1998).

Daae EB, Dunnill P, Mitsky TA, Padgette SR, Taylor NB, Valentin HE, Gruys KJ. Metabolic modeling as a tool for evaluating polyhydroxyalkanoate copolymer production in plants. Metab. Eng. 1: 243-254 (1999).

Daae EB, Ison AP. Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans. Metab. Eng. 1: 153-165 (1999).

Dassau E, Palerm CC, Zisser H, Buckingham BA, Jovanovic L, Doyle FJ. In silico evaluation platform for artificial pancreatic beta-cell development - a dynamic simulator for closed-loop control with hardware-in-the-loop. Diabetes Technol. Ther. 11: 187-194 (2009).

Dauner M, Bailey JE, Sauer U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76: 144-156 (2001).

Davies KM. Chapter 7. Plant Colour and Fragrance. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 127-163 (2000).

Day PR. Genetic modification of plants: significant issues and hurdles to success. Am. J. Clin. Nutr. 63: 651S-656S (1996).

Dayan FE, Watson SB, Nanayakkara NP. Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58: 3263-3272 (2007).

De Atauri P, Curto R, Puigjaner J, Cornish-Bowden A, Cascante M. Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modelling metabolic pathways. Eur. J. Biochem. 265: 671-679 (1999).

de Atauri P, Orrell D, Ramsey S, Bolouri H. Evolution of ‘design’ principles in biochemical networks. Syst. Biol. 1: 28-40 (2004).

De Bartolo L, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, Tasselli F, Bader A, Drioli E. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30: 2531-2543 (2009).

de Graaf AA, Eggeling L, Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 73: 9-29 (2001).

de Graaf AA, Mahle M, Mollney M, Wiechert W, Stahmann P, Sahm H. Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J. Biotechnol. 77: 25-35 (2000).

de Groot MJ, Prathumpai W, Visser J, Ruijter GJ. Metabolic control analysis of Aspergillus niger l-arabinose catabolism. Biotechnol. Prog. 21: 1610-1616 (2005).

De Luca V. Chapter 9. Metabolic Engineering of Crops with the Tryptophan Decarboxylase of Catharanthus roseus. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 179-194 (2000).

De Maria C, Grassini D, Vozzi F, Vinci B, Landi A, Ahluwalia A, Vozzi G. HEMET: mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism. Comput. Methods Programs Biomed. 92: 121-134 (2008).

De Mey M, Lequeux G, Maertens J, De Maeseneire S, Soetaert W, Vandamme E. Comparison of DNA and RNA quantification methods suitable for parameter estimation in metabolic modeling of microorganisms. Anal. Biochem. 353: 198-203 (2006).

De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal. Chem. 80: 3783-3790 (2008).

De RK, Das M, Mukhopadhyay S. Incorporation of enzyme concentrations into FBA and identification of optimal metabolic pathways. BMC Syst. Biol. 2: 65 (2008).

De Vos D, Xu Y, Aerts T, Van Petegem F, Van Beeumen JJ. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP. Biochem. Biophys. Res. Commun. 372: 40-44 (2008).

de Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72-79 (2004).

Dean JP, Dervakos GA. Redesigning metabolic networks using mathematical programming. Biotechnol. Bioeng. 58: 267-271 (1998).

Deavours BE, Dixon RA. Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 138: 2245-2259 (2005).

Deguchi M, Bennett AB, Yamaki S, Yamada K, Kanahama K, Kanayama Y. An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. Plant Cell Environ. 29: 1980-1988 (2006).

Delgado J, Liao JC. Control of metabolic pathways by time-scale separation. Biosystems 36: 55-70 (1995).

Delgado J, Liao JC. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients. Biochem. J. 285: 965-972 (1992).

Delgado J, Liao JC. Determination of Flux Control Coefficients from transient metabolite concentrations. Biochem. J. 282: 919-927 (1992).

DellaPenna D. Plant metabolic engineering. Plant Physiol. 125: 160-163 (2001).

Delmer DP, Haigler CH. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab. Eng. 4: 22-28 (2002).

Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA, Rosson RA. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7: 201-214 (2005).

Des Rosiers C, Lloyd S, Comte B, Chatham JC. A critical perspective of the use of (13)C-isotopomer analysis by GCMS and NMR as applied to cardiac metabolism. Metab. Eng. 6: 44-58 (2004).

Desai RP, Harris LM, Welker NE, Papoutsakis ET. Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1: 206-213 (1999).

Desai RP, Nielsen LK, Papoutsakis ET. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J. Biotechnol. 71: 191-205 (1999).

Desai RP, Papoutsakis ET. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl. Environ. Microbiol. 65: 936-945 (1999).

Deshpande R, Yang TH, Heinzle E. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol. J. 4: 247-263 (2009).

Desvaux M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29: 741-764 (2005).

Di Fiore S, Li Q, Leech MJ, Schuster F, Emans N, Fischer R, Schillberg S. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol. 129: 1160-1169 (2002).

Dieuaide-Noubhani M, Alonso AP, Rolin D, Eisenreich W, Raymond P. Metabolic flux analysis: recent advances in carbon metabolism in plants. EXS 97: 213-243 (2007).

Dikicioglu D, Pir P, Onsan ZI, Ulgen KO, Kirdar B, Oliver SG. Integration of metabolic modeling and phenotypic data in the evaluation and improvement of ethanol production using respiratory deficient mutants of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74: 5809-5816 (2008).

Ding D, Ding Y, Cai Y, Chen S, Xu W. Exploring poly-beta-hydroxy-butyrate metabolism through network-based extreme pathway analysis. Riv. Biol. 101: 67-80 (2008).

Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 7: 11 (2007).

Dixon RA. Phytoestrogens. Annu. Rev. Plant Biol. 55: 225-261 (2004).

Dixon RA, Howles PA, Lamb C, He XZ, Reddy JT. Prospects for the metabolic engineering of bioactive flavonoids and related phenylpropanoid compounds. Adv. Exp. Med. Biol. 439: 55-66 (1998).

Dixon RA, Lamb CJ, Masoud S, Sewalt VJ, Paiva NL. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses--a review. Gene 179: 61-71 (1996).

Dixon RA, Steele CL. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4: 394-400 (1999).

Do J, Lee S, Han J, Kai J, Hong CC, Gao C, Nevin JH, Beaucage G, Ahn CH. Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab. Chip 8: 2113-2120 (2008).

Do PM, Angerhofer A, Hrdy I, Bardonova L, Ingram LO, Shanmugam KT. Engineering Escherichia coli for fermentative dihydrogen production: potential role of NADH-ferredoxin oxidoreductase from the hydrogenosome of anaerobic protozoa. Appl. Biochem. Biotechnol. 153: 21-33 (2009).

Doering CB, Williams IR, Danner DJ. Controlled overexpression of BCKD kinase expression: metabolic engineering applied to BCAA metabolism in a mammalian system. Metab. Eng. 2: 349-356 (2000).

Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX. Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol. J. 1: 1283-1292 (2006).

Doran PM. Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng. 103: 60-76 (2009).

Dordick JS, Khmelnitsky YL, Sergeeva MV. The evolution of biotransformation technologies. Curr. Opin. Microbiol. 1: 311-318 (1998).

Dorka P, Fischer C, Budman H, Scharer JM. Metabolic flux-based modeling of mAb production during batch and fed-batch operations. Bioprocess. Biosyst. Eng. 32: 183-196 (2009).

Droste P, Weitzel M, Wiechert W. Visual exploration of isotope labeling networks in 3D. Bioprocess. Biosyst. Eng. 31: 227-239 (2008).

Du C, Yan H, Zhang Y, Li Y, Cao Z. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 69: 554-563 (2006).

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104: 1777-1782 (2007).

Duboc P, Cascao-Pereira LG, von Stockar U. Identification and control of oxidative metabolism in Ssaccharomyces cerevisiae during transient growth using calorimetric measurements. Biotechnol. Bioeng. 57: 610-619 (1998).

Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J. Exp. Bot. 56: 81-89 (2005).

Dudareva N, Negre F. Practical applications of research into the regulation of plant volatile emission. Curr. Opin. Plant Biol. 8: 113-118 (2005).

Dudareva N, Pichersky E. Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19: 181-189 (2008).

Durmus Tekir S, Cakir T, O Ulgen K. Analysis of enzymopathies in the human red blood cells by constraint-based stoichiometric modeling approaches. Comput. Biol. Chem. 30: 327-338 (2006).

Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33: 164-190 (2009).

Durzan DJ. Metabolic engineering of plant cells in a space environment. Biotechnol. Genet. Eng. Rev. 17: 353-387 (2000).

Dutta B, Kanani H, Quackenbush J, Klapa MI. Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures. Biotechnol. Bioeng. 102: 264-279 (2009).

Eberly JO, Ely RL. Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications. Crit. Rev. Microbiol. 34: 117-130 (2008).

Edahiro J, Seki M. Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. J. Biosci. Bioeng. 102: 8-13 (2006).

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-130 (2001).

Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. U.S.A. 97: 5528-5533 (2000).

Edwards JS, Palsson BO. How will bioinformatics influence metabolic engineering? Biotechnol. Bioeng. 58: 162-169 (1998).

Edwards JS, Palsson BO. Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16: 927-939 (2000).

Edwards JS, Palsson BO. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1: 1-10 (2000).

Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274: 17410-17416 (1999).

Edwards JS, Ramakrishna R, Palsson BO. Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77: 27-36 (2002).

Ehlde M, Zacchi G. Influence of experimental errors on the determination of flux control coefficients from transient metabolite concentrations. Biochem. J. 313: 721-727 (1996).

El Amrani A, Barakate A, Askari BM, Li X, Roberts AG, Ryan MD, Halpin C. Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol. 135: 16-24 (2004).

Elias CB, Carpentier E, Durocher Y, Bisson L, Wagner R, Kamen A. Improving glucose and glutamine metabolism of human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase enzyme. Biotechnol. Prog. 19: 90-97 (2003).

Elliott B, Kirac M, Cakmak A, Yavas G, Mayes S, Cheng E, Wang Y, Gupta C, Ozsoyoglu G, Ozsoyoglu ZM. PathCase: pathways database system. Bioinformatics 24: 2526-2533 (2008).

Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol. 4: 1 (2004).

Emmerling M, Bailey JE, Sauer U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab. Eng. 1: 117-127 (1999).

Emmerling M, Bailey JE, Sauer U. Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol. Bioeng. 67: 623-627 (2000).

Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10: 201-206 (2008).

Eugene Raj A, Sathish Kumar HS, Umesh Kumar S, Misra MC, Ghildyal NP, Karanth NG. High-cell-density fermentation of recombinant Saccharomyces cerevisiae using glycerol. Biotechnol. Prog. 18: 1130-1132 (2002).

Ewering C, Heuser F, Benolken JK, Bramer CO, Steinbuchel A. Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metab. Eng. 8: 587-602 (2006).

Facchini PJ. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 29-66 (2001).

Facchini PJ, De Luca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J. 54: 763-784 (2008).

Facchini PJ, Huber-Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54: 121-138 (2000).

Falony G, Lazidou K, Verschaeren A, Weckx S, Maes D, De Vuyst L. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl. Environ. Microbiol. 75: 454-461 (2009).

Famili I, Forster J, Nielsen J, Palsson BO. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. U.S.A. 100: 13134-13139 (2003).

Famili I, Mahadevan R, Palsson BO. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys. J. 88: 1616-1625 (2005).

Fan Z, Yuan L, Chatterjee R. Increased hydrogen production by genetic engineering of Escherichia coli. PLoS One 4: e4432 (2009).

Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533-537 (2000).

Farmer WR, Liao JC. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210 (1997).

Farmer WR, Liao JC. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17: 57-61 (2001).

Featherstone DE, Broadie K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24: 267-274 (2002).

Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26: 659-667 (2008).

Feist AM, Scholten JC, Palsson BO, Brockman FJ, Ideker T. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2: 2006.0004 (2006).

Fell DA. Increasing the flux in metabolic pathways: a metabolic control analysis perspective. Biotechnol. Bioeng. 58: 121-124 (1998).

Feng D, Ho D, Lau KK, Siu WC. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Comput. Methods Programs Biomed. 59: 31-43 (1999).

Ferrer JL, Austin MB, Stewart C Jr, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46: 356-370 (2008).

Ferrer P, Diers I, Asenjo JA, Andrews BA. Yeast cell permeabilizing beta-1,3-glucanases: A tool for the integration of downstream processes and metabolic engineering applications to yeast. Biotechnol. Bioeng. 58: 321-324 (1998).

Fetzner S. Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2,4-dioxygenases. Naturwissenschaften 87: 59-69 (2000).

Fiegel HC, Kaufmann PM, Bruns H, Kluth D, Horch RE, Vacanti JP, Kneser U. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory. J. Cell. Mol. Med. 12: 56-66 (2008).

Filipe CD, Daigger GT, Grady CP Jr. A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: Stoichiometry, kinetics, and the effect of pH. Biotechnol. Bioeng. 76: 17-31 (2001).

Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10: 295-304 (2008).

Fischer R, Drossard J, Schillberg S, Artsaenko O, Emans N, Naehring JM. Chapter 5. Modulation of Plant Function and Plant Pathogens by Antibody Expression. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 87-109 (2000).

Fleet GH. Wine yeasts for the future. FEMS Yeast Res. 8: 979-995 (2008).

Flores N, Xiao J, Berry A, Bolivar F, Valle F. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol. 14: 620-623 (1996).

Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DI. Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol. Bioeng. 63: 675-683 (1999).

Follstad BD, Stephanopoulos G. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway. Eur. J. Biochem. 252: 360-371 (1998).

Fong SS, Marciniak JY, Palsson BO. Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J. Bacteriol. 185: 6400-6408 (2003).

Fong SS, Nanchen A, Palsson BO, Sauer U. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J. Biol. Chem. 281: 8024-8033 (2006).

Fong SS, Palsson BO. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36: 1056-1058 (2004).

Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354 (2008).

Forbes NS, Clark DS, Blanch HW. Using isotopomer path tracing to quantify metabolic fluxes in pathway models containing reversible reactions. Biotechnol. Bioeng. 74: 196-211 (2001).

Forbes NS, Meadows AL, Clark DS, Blanch HW. Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab. Eng. 8: 639-652 (2006).

Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12: 155-160 (2001).

Fotheringham I. Engineering biosynthetic pathways: new routes to chiral amino acids. Curr. Opin. Chem. Biol. 4: 120-124 (2000).

Fouad WM, Altpeter F. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res. 18: 707-718 (2009).

Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 22: 223-234 (2000).

Franzen CJ. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20: 117-132 (2003).

Fraser PD, Enfissi EM, Bramley PM. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483: 196-204 (2009).

Freitag A, Mendez C, Salas JA, Kammerer B, Li SM, Heide L. Metabolic engineering of the heterologous production of clorobiocin derivatives and elloramycin in Streptomyces coelicolor M512. Metab. Eng. 8: 653-661 (2006).

Frick O, Wittmann C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell. Fact. 4: 30 (2005).

Fry B, Zhu T, Domach MM, Koepsel RR, Phalakornkule C, Ataai MM. Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl. Environ. Microbiol. 66: 4045-4049 (2000).

Fu J, Sampalo R, Gallardo F, Canovas FM, Kirby EG. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26: 411-418 (2003).

Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Muller R, Zhang Y. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36: e113 (2008).

Fu RY, Bongers RS, van Swam II, Chen J, Molenaar D, Kleerebezem M, Hugenholtz J, Li Y. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab. Eng. 8: 662-671 (2006).

Fujisawa M, Watanabe M, Choi SK, Teramoto M, Ohyama K, Misawa N. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J. Biosci. Bioeng. 105: 636-641 (2008).

Fukui T, Suzuki M, Tsuge T, Nakamura S. Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10: 700-706 (2009).

Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC. A synthetic gene-metabolic oscillator. Nature 435: 118-122 (2005).

Fussenegger M. The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol. Prog. 17: 1-51 (2001).

Fussenegger M, Moser S, Bailey JE. Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology 28: 111-126 (1998).

Fux C, Fussenegger M. Toward higher order control modalities in mammalian cells-independent adjustment of two different gene activities. Biotechnol. Prog. 19: 109-120 (2003).

Galban CJ, Locke BR. Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotechnol. Bioeng. 56: 422-432 (1997).

Galili G, Hofgen R. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4: 3-11 (2002).

Gall S, Lynch MD, Sandoval N, Gill RT. Parallel mapping of genotypes to phenotypes contributing to overall biological fitness. Metab. Eng. 10: 382-393 (2008).

Gallagher CE, Matthews PD, Li F, Wurtzel ET. Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135: 1776-1783 (2004).

Gambhir A, Korke R, Lee J, Fu PC, Europa A, Hu WS. Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J. Biosci. Bioeng. 95: 317-327 (2003).

Gantet P, Siberil Y, St Pierre B, Doireau P. Plant metabolic engineering. Biofutur. 207: 38-41 (2001).

Garfinkel D, Achs MJ, Kohn MC, Menten LE. Analysis of metabolic modeling in terms of engineering and computer science techniques. Fed. Proc. 38: 991-991 (1979).

Garrait G, Jarrige JF, Blanquet-Diot S, Alric M. Genetically engineered yeasts as a new delivery vehicle of active compounds to the digestive tract: in vivo validation of the concept in the rat. Metab Eng. 11: 148-154 (2009).

Gavilano LB, Coleman NP, Burnley LE, Bowman ML, Kalengamaliro NE, Hayes A, Bush L, Siminszky B. Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J. Agric. Food Chem. 54: 9071-9078 (2006).

Gayen K, Venkatesh KV. Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum. BMC Bioinformatics 7: 445 (2006).

Geertman JM, van Maris AJ, van Dijken JP, Pronk JT. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab. Eng. 8: 532-542 (2006).

Gerdtzen ZP, Daoutidis P, Hu WS. Non-linear reduction for kinetic models of metabolic reaction networks. Metab. Eng. 6: 140-154 (2004).

Gerlach JC, Zeilinger K, Patzer II JF. Bioartificial liver systems: why, what, whither? Regen. Med. 3: 575-595 (2008).

Gerlt JA, Babbitt PC. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70: 209-246 (2001).

Ghosh S, Grossmann IE, Ataai MM, Domach MM. A three-level problem-centric strategy for selecting NMR precursor labeling and analytes. Metab. Eng. 8: 491-507 (2006).

Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA. Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9: 43 (2008).

Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18: 1151-1155 (2000).

Gill RT. Enabling inverse metabolic engineering through genomics. Curr. Opin. Biotechnol. 14: 484-490 (2003).

Gill RT, Dodge T. Special issue on inverse metabolic engineering. Metab. Eng. 6: 175-176 (2004).

Gill RT, Valdes JJ, Bentley WE. A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli. Metab. Eng. 2: 178-189 (2000).

Gilliland LU, Magallanes-Lundback M, Hemming C, Supplee A, Koornneef M, Bentsink L, DellaPenna D. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 103: 18834-18841 (2006).

Gipson GT, Tatsuoka KS, Ball RJ, Sokhansanj BA, Hansen MK, Ryan TE, Hodson MP, Sweatman BC, Connor SC. Multi-platform investigation of the metabolome in a leptin receptor defective murine model of type 2 diabetes. Mol. Biosyst. 4: 1015-1023 (2008).

Giuliano G, Aquilani R, Dharmapuri S. Metabolic engineering of plant carotenoids. Trends Plant Sci. 5: 406-409 (2000).

Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 26: 139-145 (2008).

Glawischnig E, Gierl A, Tomas A, Bacher A, Eisenreich W. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. metabolic flux in developing maize kernels. Plant Physiol. 125: 1178-1186 (2001).

Glawischnig E, Gierl A, Tomas A, Bacher A, Eisenreich W. Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol. 130: 1717-1727 (2002).

Glykys DJ, Banta S. Metabolic control analysis of an enzymatic biofuel cell. Biotechnol. Bioeng. 102: 1624-1635 (2009).

Gnanasambandam A, Polkinghorne IG, Birch RG. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species. Plant Biotechnol. J. 5: 290-296 (2007).

Goel A, Lee J, Domach MM, Ataai MM. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux. Biotechnol. Bioeng. 64: 129-134 (1999).

Goel G, Chou IC, Voit EO. System estimation from metabolic time series data. Bioinformatics 24: 2505-2511 (2008).

Goerke AR, Loening AM, Gambhir SS, Swartz JR. Cell-free metabolic engineering promotes high-level production of bioactive Gaussia princeps luciferase. Metab. Eng. 10: 187-200 (2008).

Gokarn RR, Eiteman MA, Altman E. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. Appl. Environ. Microbiol. 66: 1844-1850 (2000).

Golovleva L, Golovlev E. Microbial cellular biology and current problems of metabolic engineering. J. Molecular Catalysis B-Enzymatic 10: 5-21 (2000).

Gombert AK, Nielsen J. Mathematical modelling of metabolism. Curr. Opin. Biotechnol. 11: 180-186 (2000).

Gonzalez R, Andrews BA, Asenjo JA. Metabolic control analysis of monoclonal antibody synthesis. Biotechnol. Prog. 17: 217-226 (2001).

Gonzalez R, Andrews BA, Molitor J, Asenjo JA. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol. Bioeng. 82: 152-169 (2003).

Gonzalez-Lergier J, Broadbelt LJ, Hatzimanikatis V. Anlysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli. Biotechnol. Bioeng. 95: 638-644 (2006).

Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7: 329-336 (2005).

Goutsias J, Kim S. A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Biophys. J. 86: 1922-1945 (2004).

Graf A, Dragosits M, Gasser B, Mattanovich D. Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res. 9: 335-348 (2009).

Graham IA, Larson T, Napier JA. Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr. Opin. Biotechnol. 18: 142-147 (2007).

Graham JE, Bryant DA. The biosynthetic pathway for myxol-2' fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 191: 3292-3300 (2009).

Granstrom T, Aristidou AA, Leisola M. Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab. Eng. 4: 248-256 (2002).

Granstrom TB, Aristidou AA, Jokela J, Leisola M. Growth characteristics and metabolic flux analysis of Candida milleri. Biotechnol. Bioeng. 70: 197-207 (2000).

Groeneveld P, Rolley N, Kell DB, Kelly SL, Kelly DE. Metabolic control analysis and engineering of the yeast sterol biosynthetic pathway. Mol. Biol. Rep. 29: 27-29 (2002).

Grotewold E. Transcription factors for predictive plant metabolic engineering: are we there yet? Curr. Opin. Biotechnol. 19: 138-144 (2008).

Grubb CD, Abel S. Glucosinolate metabolism and its control. Trends Plant Sci. 11: 89-100 (2006).

Guardia MJ, Gambhir A, Europa AF, Ramkrishna D, Hu WS. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells. Biotechnol. Prog. 16: 847-853 (2000).

Guebel DV. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling. In Silico Biol. 4: 0015 (2004).

Guedon E, Desvaux M, Petitdemange H. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68: 53-58 (2002).

Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9: 341-346 (2006).

Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol. 24: 403-409 (2006).

Guimera R, Sales-Pardo M, Amaral LA. A network-based method for target selection in metabolic networks. Bioinformatics 23: 1616-22 (2007).

Guimera R, Sales-Pardo M, Amaral LA. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3: 63-69 (2007).

Guo YQ, Tian ZY, Yan DL, Zhang J, Qin P. Analysis of gene expression involved in the response to salt stress in the dicot halophyte Kosteletzkya virginica L. seedlings. Yi Chuan 30: 941-950 (2008).

Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biotechnol. 73: 53-84 (2001).

Haigler CH, Zhang DH, Wilkerson CG. Biotechnological improvement of cotton fibre maturity. Physiol. Plant. 124: 285-294 (2005).

Hain R, Grimmig B. Chapter 11. Modification of Plant Secondary Metabolism by Genetic Engineering. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 217-231 (2000).

Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57: 303-333 (2006).

Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol. 27: 287-297 (2009).

Halls C, Yu O. Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol. 26: 77-81 (2008).

Halpin C, Boerjan W. Stacking transgenes in forest trees. Trends Plant Sci. 8: 363-365 (2003).

Hamby DM, Palmer TS. Analysis of an internal kinetic model for free and bound tritium. Health Phys. 81: 426-437 (2001).

Han KY, Park JS, Seo HS, Ahn KY, Lee J. Multiple stressor-induced proteome responses of Escherichia coli BL21(DE3). J. Proteome Res. 7: 1891-1903 (2008).

Han MJ, Yun H, Lee SY. Microbial small heat shock proteins and their use in biotechnology. Biotechnol. Adv. 26: 591-609 (2008).

Han SJ, Chang HN, Lee J. Characterization of an oxygen-dependent inducible promoter, the nar promoter of Escherichia coli, to utilize in metabolic engineering. Biotechnol. Bioeng. 72: 573-576 (2001).

Hans MA, Heinzle E, Wittmann C. Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol. Bioeng. 82: 143-151 (2003).

Hans MA, Heinzle E, Wittmann C. Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 56: 776-779 (2001).

Hanson AD, Burnet M. Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In (JH Cherry ed) "Biochemical and Cellular Mechanisms of Stress Tolerance in Plants", NATO ASI Series, Vol. H86. Springer-Verlag, Berlin, pp. 291-302 (1994).

Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc. Natl. Acad. Sci. U.S.A. 91: 306-310 (1994).

Hanson AD, Shanks JV. Plant metabolic engineering - entering the S curve. Metab. Eng. 4: 1-2 (2002).

Harada H, Yu F, Okamoto S, Kuzuyama T, Utsumi R, Misawa N. Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81: 915-925 (2009).

Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553 (1998).

Harle J, Bechthold A. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Methods Enzymol. 458: 309-333 (2009).

Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J. 22: 335-343 (2000).

Harris DM, Diderich JA, van der Krogt ZA, Luttik MA, Raamsdonk LM, Bovenberg RA, van Gulik WM, van Dijken JP, Pronk JT. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase. Metab. Eng. 8: 91-101 (2006).

Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 10: 75 (2009).

Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J. Ind. Microbiol. Biotechnol. 27: 322-328 (2001).

Harris LM, Desai RP, Welker NE, Papoutsakis ET. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67: 1-11 (2000).

Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr. Opin. Biotechnol. 14: 163-168 (2003).

Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa K, Fukusaki E, Miyake C. Overexpression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J. Biosci. Bioeng. 105: 518-526 (2008).

Hatzimanikatis V. Nonlinear metabolic control analysis. Metab. Eng. 1: 75-87 (1999).

Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE. Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol. Bioeng. 58: 154-161 (1998).

Hebert CG, Valdes JJ, Bentley WE. Beyond silencing - engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr. Opin. Biotechnol. 19: 500-505 (2008).

Heide L. Chapter 12. Expression of the Bacterial ubiC Gene Opens a New Biosynthetic Pathway in Plants. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 233-251 (2000).

Heijnen JJ. New experimental and theoretical tools for metabolic engineering of micro-organisms. Meded. Rijksuniv. Gent. Fak. Landbouwkd.Toegep. Biol. Wet. 66: 11-30 (2001).

Heinzle E, Matsuda F, Miyagawa H, Wakasa K, Nishioka T. Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant J. 50: 176-187 (2007).

Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow HH, Wehrung P, Adam P, Albrecht P. Analysis of (13)C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry. Anal. Biochem. 380: 202-210 (2008).

Helmstaedt K, Krappmann S, Braus GH. Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol. Mol. Biol. Rev. 65: 404-421 (2001).

Hendrickson EL, Lamont RJ, Hackett M. Tools for interpreting large-scale protein profiling in microbiology. J. Dent. Res. 87: 1004-1015 (2008).

Herrero O, Ramon D, Orejas M. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab. Eng. 10: 78-86 (2008).

Herrgard MJ, Covert MW, Palsson BO. Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15: 70-77 (2004).

Hershberger CL. Metabolic engineering of polyketide biosynthesis. Curr. Opin. Biotechnol. 7: 560-562 (1996).

Herwig C, Marison I, von Stockar U. On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol. Bioeng. 75: 345-354 (2001).

Herwig C, Von Stockar U. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis. Biotechnol. Bioeng. 81: 837-847 (2003).

Heux S, Cachon R, Dequin S. Cofactor engineering in Saccharomyces cerevisiae: expression of a H(2)O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8: 303-314 (2006).

Heux S, Sablayrolles JM, Cachon R, Dequin S. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions. Appl. Environ. Microbiol. 72: 5822-5828 (2006).

Heyer AG. Production of modified carbohydrates in transgenic plants. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 43: 94-98 (2000).

Hintze A, Adami C. Evolution of complex modular biological networks. PLoS Comput. Biol. 4: e23 (2008).

Hjersted JL, Henson MA, Mahadevan R. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol. Bioeng. 97: 1190-1204 (2007).

Ho NW, Chen Z, Brainard AP, Sedlak M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 65: 163-192 (1999).

Ho QT, Verboven P, Verlinden BE, Lammertyn J, Vandewalle S, Nicolai BM. A continuum model for metabolic gas exchange in pear fruit. PLoS Comput. Biol. 4: e1000023 (2008).

Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003-1013 (2002).

Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of omega 3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J. Biol. Chem. 283: 22352-22362 (2008).

Hogiri T, Furusawa C, Shinfuku Y, Ono N, Shimizu H. Analysis of metabolic network based on conservation of molecular structure. Biosystems 95: 175-178 (2009).

Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J. Biotechnol. 139: 203-210 (2009).

Hold C, Andrews BA, Asenjo JA. A stoichiometric model of Acidithiobacillus ferrooxidans ATCC 23270 for metabolic flux analysis. Biotechnol. Bioeng. 102: 1448-1459 (2009).

Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17: 588-592 (1999).

Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J. Biotechnol. 122: 28-38 (2006).

Hong SH, Lee SY. Metabolic flux distribution in a metabolically engineered Escherichia coli strain producing succinic acid. J. Microbiol. Biotechnol. 10: 496-501 (2000).

Hong SH, Lee SY. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol. Bioeng. 74: 89-95 (2001).

Hong SH, Park SJ, Moon SY, Park JP, Lee SY. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83: 854-863 (2003).

Hong Y, Hu HY, Li FM. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 71: 527-534 (2008).

Hoon Yang T, Wittmann C, Heinzle E. Respirometric (13)C flux analysis. Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab. Eng. 8: 432-446 (2006).

Hoon Yang T, Wittmann C, Heinzle EE. Metabolic network simulation using logical loop algorithm and Jacobian matrix. Metab. Eng. 6: 256-267 (2004).

Hooykaas PJ. Chapter 3. Agrobacterium, a Natural Metabolic Engineer of Plants. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 51-67 (2000).

Hou J, Vemuri GN, Bao X, Olsson L. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82: 909-919 (2009).

Hovhannisyan N, Harutyunyan S, Hovhannisyan A, Hambardzumyan A, Chitchyan M, Melkumyan M, Oganezova G, Avetisyan N. The novel inhibitors of serine proteases. Amino Acids 37: 531-536 (2009).

Howles PA, Sewalt V, Paiva NL, Elkind Y, Bate NJ, Lamb C, Dixon RA. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112: 1617-1624 (1996).

Hua Q, Araki M, Koide Y, Shimizu K. Effects of glucose, vitamins, and DO concentrations on pyruvate fermentation using Torulopsis glabrata IFO 0005 with metabolic flux analysis. Biotechnol. Prog. 17: 62-68 (2001).

Hua Q, Joyce AR, Fong SS, Palsson BO. Metabolic analysis of adaptive evolution for in silico designed lactate-producing strains. Biotechnol. Bioeng. 95: 992-1002 (2006).

Hua Q, Yang C, Shimizu K. Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. J. Biosci. Bioeng. 90: 184-192 (2000).

Hua Q, Yang C, Shimizu K. Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata. J. Biosci. Bioeng. 87: 206-213 (1999).

Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 122: 747-756 (2000).

Huang TS, Anzellotti D, Dedaldechamp F, Ibrahim RK. Partial purification, kinetic analysis, and amino acid sequence information of a flavonol 3-O-methyltransferase from Serratula tinctoria. Plant Physiol. 134: 1366-1376 (2004).

Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol. 10: 492-497 (1999).

Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab. Eng. 6: 268-276 (2004).

Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86: 718-727 (2004).

Hughes EH, Shanks JV. Metabolic engineering of plants for alkaloid production. Metab. Eng. 4: 41-48 (2002).

Humphrey TV, Richman AS, Menassa R, Brandle JE. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol. Biol. 61: 47-62 (2006).

Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo Z, van Vuuren HJ. Metabolic engineering of malolactic wine yeast. Metab. Eng. 8: 315-323 (2006).

Hutchinson CR. Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1: 319-329 (1998).

Hwang D, Stephanopoulos G, Chan C. Inverse modeling using multi-block PLS to determine the environmental conditions that provide optimal cellular function. Bioinformatics 20: 487-499 (2004).

Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-189 (2002).

Ingalls BP. Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. Syst. Biol. 1: 62-70 (2004).

Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW. Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58: 204-214 (1998).

Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L: -(+)-lactic acid. Appl. Biochem. Biotechnol. 131: 795-807 (2006).

Ishikawa K, Gunji Y, Yasueda H, Asano K. Improvement of L-lysine production by Methylophilus methylotrophus from methanol via the Entner-Doudoroff pathway, originating in Escherichia coli. Biosci. Biotechnol. Biochem. 72: 2535-2542 (2008).

Islam R, Cicek N, Sparling R, Levin D. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 82: 141-148 (2009).

Iwatani S, Yamada Y, Usuda Y. Metabolic flux analysis in biotechnology processes. Biotechnol. Lett. 30: 791-799 (2008).

Iyer VV, Sriram G, Fulton DB, Zhou R, Westgate ME, Shanks JV. Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons. Plant Cell Environ. 31: 506-517 (2008).

Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R Jr, Sun J, Schilling CH, Lovley DR. Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng. 10: 267-275 (2008).

Izumi Y, Kajiyama S, Nakamura R, Ishihara A, Okazawa A, Fukusaki E, Kanematsu Y, Kobayashi A. High-resolution spatial and temporal analysis of phytoalexin production in oats. Planta 229: 931-943 (2009).

Jacobsen JR, Khosla C. New directions in metabolic engineering. Curr. Opin. Chem. Biol. 2: 133-137 (1998).

Jain AK, Nessler CL. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breeding 6: 73-78 (2000).

Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE. Overexpression of wild-type aspartokinase increases L-lysine production in thermotolerant methylotrophic Bacillus methanolicus. Appl. Environ. Microbiol. 75: 652-661 (2009).

James CA, Strand SE. Phytoremediation of small organic contaminants using transgenic plants. Curr. Opin. Biotechnol. 20: 237-241 (2009).

Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO. Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 17: 286-287 (2001).

Jamshidi N, Palsson BO. Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput. Biol. 4: e1000177 (2008).

Jeanneau M, Vidal J, Gousset-Dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P. Manipulating PEPC levels in plants. J. Exp. Bot. 53: 1837-1845 (2002).

Jeffries TW. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326 (2006).

Jeffryes C, Gutu T, Jiao J, Rorrer GL. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano. 2: 2103-2112 (2008).

Jenner HL. Transgenesis and yield: what are our targets? Trends Biotechnol. 21: 190-192 (2003).

Jensen PR, Hammer K. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58: 191-195 (1998).

Jetten MS, Follettie MT, Sinskey AJ. Metabolic engineering of Corynebacterium glutamicum. Ann. N.Y. Acad. Sci. 721: 12-29 (1994).

Jetter R, Kunst L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J. 54: 670-683 (2008).

Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 4: 220 (2008).

Jewett MC, Miller ML, Chen Y, Swartz JR. Continued protein synthesis at low [ATP] and [GTP] enables cell adaptation during energy limitation. J. Bacteriol. 191: 1083-1091 (2009).

Jiang K, Pi Y, Hou R, Jiang L, Sun X, Tang K. Promotion of nicotine biosynthesis in transgenic tobacco by overexpressing allene oxide cyclase from Hyoscyamus niger. Planta 229: 1057-1063 (2009).

Jin LH, Um HJ, Yin CJ, Kim YH, Lee JH. Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J. Biotechnol. 138: 80-87 (2008).

Jin YS, Jeffries TW. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng. 6: 229-238 (2004).

Jin YS, Stephanopoulos G. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab. Eng. 9: 337-347 (2007).

Jo JH, Lee DS, Kim J, Park JM. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. J. Microbiol. Biotechnol. 19: 291-298 (2009).

Jobe AM, Herwig C, Surzyn M, Walker B, Marison I, Von Stockar U. Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol. Bioeng. 82: 627-639 (2003).

Johnson ET, Schmidt-Dannert C. Light-energy conversion in engineered microorganisms. Trends Biotechnol. 26: 682-689 (2008).

Jones KD, Kompala DS. Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J. Biotechnol. 71: 105-131 (1999).

Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2: 328-338 (2000).

Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8: 280-291 (2005).

Jumtee K, Bamba T, Okazawa A, Fukusaki E, Kobayashi A. Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. J. Exp. Bot. 59: 1187-1200 (2008).

Jung GY, Stephanopoulos G. A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 304: 428-431 (2004).

Jung Y, Park J, Lee Y. Metabolic engineering of Alcaligenes eutrophus through the transformation of cloned phbCAB genes for the investigation of the regulatory mechanism of polyhydroxyalkanoate biosynthesis. Enzyme Microb. Technol. 26: 201-208 (2000).

Juvvadi PR, Seshime Y, Kitamoto K. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J. Microbiol. 43 :475-486 (2005).

Kadirkamanathan V, Yang J, Billings SA, Wright PC. Markov Chain Monte Carlo algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum. Bioinformatics 22: 2681-2687 (2006).

Kai G, Zhang Y, Chen J, Li L, Yan X, Zhang R, Liao P, Lu X, Wang W, Zhou G. Molecular characterization and expression analysis of two distinct putrescine N-methyltransferases from roots of Anisodus acutangulus. Physiol. Plant. 135: 121-129 (2009).

Kanani H, Chrysanthopoulos PK, Klapa MI. Standardizing GC-MS metabolomics. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 871: 191-201 (2008).

Kang Z, Wang Q, Zhang H, Qi Q. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl. Microbiol. Biotechnol. 79: 203-208 (2008).

Kanno T, Komatsu A, Kasai K, Dubouzet JG, Sakurai M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway. Plant Physiol. 138: 2260-2268 (2005).

Kao KC, Tran LM, Liao JC. A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J. Biol. Chem. 280: 36079-36087 (2005).

Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab. Eng. 7: 384-400 (2005).

Katoh T, Yuguchi D, Yoshii H, Shi H, Shimizu K. Dynamics and modeling on fermentative production of poly (beta-hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J. Biotechnol. 67: 113-134 (1999).

Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154: 2620-2628 (2008).

Kauffman KJ, Pajerowski JD, Jamshidi N, Palsson BO, Edwards JS. Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys. J. 83: 646-662 (2002).

Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14: 491-496 (2003).

Kaufmann H, Mazur X, Fussenegger M, Bailey JE. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol. Bioeng. 63: 573-582 (1999).

Kaya-Celiker H, Angardi V, Calik P. Regulatory effects of oxygen transfer on overexpression of recombinant benzaldehyde lyase production by Escherichia coli BL21 (DE3). Biotechnol J. 4: 1066-1076 (2009).

Kayser A, Weber J, Hecht V, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151: 693-706 (2005).

Kazakov AE, Rodionov DA, Alm E, Arkin AP, Dubchak I, Gelfand MS. Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. J. Bacteriol. 191: 52-64 (2009).

Keasling JD. Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol. 17: 452-460 (1999).

Keasling JD, Chou H. Metabolic engineering delivers next-generation biofuels. Nat. Biotechnol. 26: 298-299 (2008).

Keasling JD, Van Dien SJ, Pramanik J. Engineering polyphosphate metabolism in Escherichia coli: implications for bioremediation of inorganic contaminants. Biotechnol. Bioeng. 58: 231-239 (1998).

Kelleher JK. Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab. Eng. 3: 100-110 (2001).

Kelleher JK. Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology. Metab. Eng. 6: 1-5 (2004).

Keulers M, Suzuki T, Satroutdinov AD, Kuriyama H. Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol. Lett. 142: 253-258 (1996).

Keusch GT. What do -omics mean for the science and policy of the nutritional sciences? Am. J. Clin. Nutr. 83: 520S-522S (2006).

Kholodenko BN, Cascante M, Hoek JB, Westerhoff HV, Schwaber J. Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes. Biotechnol. Bioeng. 59: 239-247 (1998).

Kholodenko BN, Westerhoff HV, Schwaber J, Cascante M. Engineering a living cell to desired metabolite concentrations and fluxes: pathways with multifunctional enzymes. Metab. Eng. 2: 1-13 (2000).

Khoo SH, Al-Rubeai M. Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab. Eng. 11: 199-211 (2009).

Kim BJ, Forbes NS. Flux analysis shows that hypoxia-inducible-factor-1-alpha minimally affects intracellular metabolism in tumor spheroids. Biotechnol. Bioeng. 96: 1167-1182 (2007).

Kim EJ, Sampathkumar SG, Jones MB, Rhee JK, Baskaran G, Goon S, Yarema KJ. Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acyl-modified N-acetylmannosamine analogs in Jurkat cells. J. Biol. Chem. 279: 18342-18352 (2004).

Kim HU, Kim TY, Lee SY. Metabolic flux analysis and metabolic engineering of microorganisms. Mol. Biosyst. 4: 113-120 (2008).

Kim J, Saidel GM, Kalhan SC. A computational model of adipose tissue metabolism: evidence for intracellular compartmentation and differential activation of lipases. J. Theor. Biol. 251: 523-540 (2008).

Kim JH, Lee YJ, Kim BG, Lim Y, Ahn JH. Flavanone 3beta-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis. Mol. Cells 25: 312-316 (2008).

Kim JI, Varner JD, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Biotechnol. Prog. 24: 993-1006 (2008).

Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J. Exp. Bot. 58: 415-424 (2007).

Kim JY, Cha HJ. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: Improved foreign protein production. Biotechnol. Bioeng. 83: 841-853 (2003).

Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, Park S. Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. U.S.A. 104: 13638-13642 (2007).

Kim SW, Keasling JD. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72: 408-415 (2001).

Kim TY, Sohn SB, Kim HU, Lee SY. Strategies for systems-level metabolic engineering. Biotechnol. J. 3: 612-623 (2008).

Kim Y, Nandakumar MP, Marten MR. The state of proteome profiling in the fungal genus Aspergillus. Brief. Funct. Genomic. Proteomic. 7: 87-94 (2008).

Kimura E. Metabolic engineering of glutamate production. Adv. Biochem. Eng. Biotechnol. 79: 37-57 (2003).

Kinney AJ. Manipulating flux through plant metabolic pathways. Curr. Opin. Plant Biol. 1: 173-178 (1998).

Kinney AJ. Metabolic engineering in plants for human health and nutrition. Curr. Opin. Biotechnol. 17: 130-138 (2006).

Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat. Prod. Rep. 25: 656-661 (2008).

Kisker C, Schindelin H, Rees DC. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu. Rev. Biochem. 66: 233-267 (1997).

Kiviharju K, Moilanen U, Leisola M, Eerikainen T. A chemostat study of Streptomyces peucetius var. caesius N47. Appl. Microbiol. Biotechnol. 73: 1267-1274 (2007).

Kizer L, Pitera DJ, Pfleger BF, Keasling JD. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74: 3229-3241 (2008).

Klamt S, Schuster S, Gilles ED. Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol. Bioeng. 77: 734-751 (2002).

Klapa MI, Aon JC, Stephanopoulos G. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur. J. Biochem. 270: 3525-3542 (2003).

Klapa MI, Park SM, Sinskey AJ, Stephanopoulos G. Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. Biotechnol. Bioeng. 62: 375-391 (1999).

Kleerebezem M, Hugenholtz J. Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotechnol. 14: 232-237 (2003).

Kleerebezemab M, Hols P, Hugenholtz J. Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microb. Technol. 26: 840-848 (2000).

Koffas M, Roberge C, Lee K, Stephanopoulos G. Metabolic engineering. Annu. Rev. Biomed. Eng. 1: 535-557 (1999).

Koffas M, Stephanopoulos G. Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr. Opin. Biotechnol. 16: 361-366 (2005).

Koffas MA. Expanding the repertoire of biofuel alternatives through metabolic pathway evolution. Proc. Natl. Acad. Sci. U.S.A. 106: 965-966 (2009).

Koffas MA, Jung GY, Stephanopoulos G. Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab. Eng. 5: 32-41 (2003).

Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G. Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess. Biosyst. Eng. 29: 367-377 (2006).

Komives C, Parker RS. Bioreactor state estimation and control. Curr. Opin. Biotechnol. 14: 468-474 (2003).

Kompala DS. Cybernetic modeling of spontaneous oscillations in continuous cultures of Saccharomyces cerevisiae. J. Biotechnol. 71: 267-274 (1999).

Kongjan P, Min B, Angelidaki I. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Water Res. 43: 1414-1424 (2009).

Kota P, Guo D, Zubieta C, Noel J, Dixon RA. O-Methylation of benzaldehyde derivatives by "lignin specific" caffeic acid 3-O-methyltransferase. Phytochemistry 65: 837-846 (2004).

Krahulec S, Klimacek M, Nidetzky B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J. 4: 684-694 (2009).

Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L. Metabolic engineering for microbial production of shikimic acid. Metab. Eng. 5: 277-283 (2003).

Kramer SF, Bentley WE. RNA interference as a metabolic engineering tool: potential for in vivo control of protein expression in an insect larval model. Metab. Eng. 5: 183-190 (2003).

Kreft O, Hoefgen R, Hesse H. Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants. Plant Physiol. 131: 1843-1854 (2003).

Kremling A, Jahreis K, Lengeler JW, Gilles ED. The organization of metabolic reaction networks: a signal-oriented approach to cellular models. Metab. Eng. 2: 190-200 (2000).

Krens FA, Keizer LCP, Capel IEM. Transgenic caraway, Carum carvi L.: a model species for metabolic engineering. Plant Cell Rep. 17: 39-43 (1997).

Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. U.S.A. 102: 1779-1784 (2005).

Kroll K, Decking UK, Dreikorn K, Schrader J. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ. Res. 73: 846-856 (1993).

Kromer JO, Bolten CJ, Heinzle E, Schroder H, Wittmann C. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154: 3917-3930 (2008).

Kromer JO, Heinzle E, Schroder H, Wittmann C. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J. Bacteriol. 188: 609-618 (2006).

Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186: 1769-1784 (2004).

Kromer JO, Wittmann C, Schroder H, Heinzle E. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab. Eng. 8: 353-369 (2006).

Kruger NJ, Ratcliffe RG. Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie. 91: 697-702 (2009).

Kuipers OP. Genomics for food biotechnology: prospects of the use of high-throughput technologies for the improvement of food microorganisms. Curr. Opin. Biotechnol. 10: 511-516 (1999).

Kumar VS, Maranas CD. GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput. Biol. 5: e1000308 (2009).

Kummel A, Panke S, Heinemann M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2: 2006.0034 (2006).

Kunze R, Frommer WB, Flugge UI. Metabolic engineering of plants: the role of membrane transport. Metab. Eng. 4: 57-66 (2002).

Kutchan TM. Alkaloid biosynthesis - the basis for metabolic engineering of medicinal plants. Plant Cell 7: 1059-1070 (1995).

Lacerda CM, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief. Funct. Genomic. Proteomic. 8: 75-87 (2009).

Lai K, Klapa MI. Alternative pathways of galactose assimilation: could inverse metabolic engineering provide an alternative to galactosemic patients? Metab. Eng. 6: 239-244 (2004).

Lai N, Saidel GM, Iorio M, Cabrera ME. Non-invasive estimation of metabolic flux and blood flow in working muscle: effect of blood-tissue distribution. Adv. Exp. Med. Biol. 645: 155-160 (2009).

Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. U.S.A. 97: 2934-2939 (2000).

Last RL, Jones AD, Shachar-Hill Y. Towards the plant metabolome and beyond. Nat. Rev. Mol. Cell. Biol. 8: 167-174 (2007).

Latino DA, Zhang QY, Aires-de-Sousa J. Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps. Bioinformatics 24: 2236-2244 (2008).

Lau MW, Dale BE. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc. Natl. Acad. Sci. U.S.A. 106: 1368-1373 (2009).

Lawlor DW. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot. 53: 773-787 (2002).

Leaf TA, Srienc F. Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol. Bioeng. 57: 557-570 (1998).

Ledakowicz S. Biochemical engineering. Inz. Chemiczna Proces. 22: 65-74 (2001).

Lee DY, Fan LT, Park S, Lee SY, Shafie S, Bertok B, Friedler F. Complementary identification of multiple flux distributions and multiple metabolic pathways. Metab. Eng. 7: 182-200 (2005).

Lee DY, Saha R, Yusufi FN, Park W, Karimi IA. Web-based applications for building, managing and analysing kinetic models of biological systems. Brief. Bioinform. 10: 65-74 (2009).

Lee DY, Yun C, Cho A, Hou BK, Park S, Lee SY. WebCell: a web-based environment for kinetic modeling and dynamic simulation of cellular networks. Bioinformatics 22: 1150-1151 (2006).

Lee DY, Zimmer R, Lee SY, Park S. Colored Petri net modeling and simulation of signal transduction pathways. Metab. Eng. 8: 112-122 (2006).

Lee HC, Kim JH, Kim JS, Jang W, Kim SY. Fermentative production of thymidine by a metabolically engineered Escherichia coli strain. Appl. Environ. Microbiol. 75: 2423-2432 (2009).

Lee J, Yun H, Feist AM, Palsson BO, Lee SY. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl. Microbiol. Biotechnol. 80: 849-862 (2008).

Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb. Cell Fact. 8: 2 (2009).

Lee K, Berthiaume F, Stephanopoulos GN, Yarmush DM, Yarmush ML. Metabolic flux analysis of postburn hepatic hypermetabolism. Metab. Eng. 2: 312-327 (2000).

Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Induction of a hypermetabolic state in cultured hepatocytes by glucagon and H2O2. Metab. Eng. 5: 221-229 (2003).

Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Profiling of dynamic changes in hypermetabolic livers. Biotechnol. Bioeng. 83: 400-415 (2003).

Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Metabolic flux analysis: a powerful tool for monitoring tissue function. Tissue Eng. 5: 347-368 (1999).

Lee KM, Rhee CH, Kang CK, Kim JH. Statistical medium formulation and process modeling by mixture design of experiment for peptide overexpression in recombinant Escherichia coli. Appl. Biochem. Biotechnol. 135: 81-110 (2006).

Lee LK, Roth CM. Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol. 14: 505-511 (2003).

Lee SG, Liao JC. Control of acetate production rate in Escherichia coli by regulating expression of single-copy pta using lacI(Q) in multicopy plasmid. J. Microbiol. Biotechnol. 18: 334-337 (2008).

Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71: 7880-7887 (2005).

Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556-563 (2008).

Lee SY, Kim HU, Park JH, Park JM, Kim TY. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov. Today 14: 78-88 (2009).

Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform. Ser. Workshop Genome Inform. 14: 23-33 (2003).

Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101: 209-228 (2008).

Lee W, Dasilva NA. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65 (2006).

Lee YY, Wong KT, Nissom PM, Wong DC, Yap MG. Transcriptional profiling of batch and fed-batch protein-free 293-HEK cultures. Metab. Eng. 9: 52-67 (2007).

Leech MJ, Burtin D, Hallard D, Hilliou F, Kemp B, Palacios N, Rocha P, O'Callaghan D, Verpoote R, Christou P. Chapter 4. Particle Gun Methodology as a Tool in Metabolic Engineering. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 69-86 (2000).

Lemuth K, Hardiman T, Winter S, Pfeiffer D, Keller MA, Lange S, Reuss M, Schmid RD, Siemann-Herzberg M. Global transcription and metabolic flux analysis of Escherichia coli in glucose-limited fed-batch cultivations. Appl. Environ. Microbiol. 74: 7002-7015 (2008).

Leonard E, Runguphan W, O'Connor S, Prather KJ. Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat. Chem. Biol. 5: 292-300 (2009).

Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257-265 (2008).

Leonard E, Yan Y, Koffas MA. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab. Eng. 8: 172-181 (2006).

Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ. Manipulating gene expression for the metabolic engineering of plants. Metab. Eng. 4: 67-79 (2002).

Lessire R, Cahoon E, Chapman K, Dyer J, Eastmond P, Heinz E. Highlights of recent progress in plant lipid research. Plant Physiol. Biochem. 47: 443-447 (2009).

Lewandowski AT, Bentley WE, Yi H, Rubloff GW, Payne GF, Ghodssi R. Towards area-based in vitro metabolic engineering: assembly of Pfs enzyme onto patterned microfabricated chips. Biotechnol. Prog. 24: 1042-1051 (2008).

Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127: 1256-1265 (2001).

Li D, Zheng W, Qu JY. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence. Opt. Lett. 33: 2365-2367 (2008).

Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET. The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress-tolerance. Plant Physiol. 147: 1334-1346 (2008).

Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67: 553-560 (2006).

Li H, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I. Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226: 1243-1254 (2007).

Li J, Wu XD, Hao ST, Wang XJ, Ling HQ. Proteomic response to iron deficiency in tomato root. Proteomics 8: 2299-2311 (2008).

Li M, Ho PY, Yao S, Shimizu K. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by (13)C-labeling experiments. J. Biotechnol. 122: 254-266 (2006).

Li N, Lv J, Niu DK. Low contents of carbon and nitrogen in highly abundant proteins: evidence of selection for the economy of atomic composition. J. Mol. Evol. 68: 248-255 (2009).

Li XM, Li NQ, Yang Y, Jiang XL, Qiu YJ, Zhang XY. Metabolic flux analysis of L-valine fermentation in Corynebacterium glutamicum. Sheng Wu Gong Cheng Xue Bao 20: 403-407 (2004).

Li Y, de Ridder D, de Groot MJ, Reinders MJ. Metabolic pathway alignment between species using a comprehensive and flexible similarity measure. BMC Syst. Biol. 2: 111 (2008).

Li Y, Kandasamy MK, Meagher RB. Rapid isolation of monoclonal antibodies. Monitoring enzymes in the phytochelatin synthesis pathway. Plant Physiol. 127: 711-719 (2001).

Li Y, Luo J, Zhou H, Liao JY, Ma LM, Chen YQ, Qu LH. Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res. 36: 6048-6055 (2008).

Li Z, Chan C. Integrating gene expression and metabolic profiles. J. Biol. Chem. 279: 27124-27137 (2004).

Li Z, Chan C. Inferring pathways and networks with a Bayesian framework. FASEB J. 18: 746-748 (2004).

Liang X, Qiao D, Huang M, Yi X, Bai L, Xu H, Wei L, Zeng J, Cao Y. Identification of a gene encoding the light-harvesting chlorophyll a/b proteins of photosystem I in green alga Dunaliella salina. DNA Seq. 19: 137-145 (2008).

Liang Y, Zhao S. Progress in understanding of ginsenoside biosynthesis. Plant Biol. (Stuttg.) 10: 415-421 (2008).

Liao JC. Modelling and analysis of metabolic pathways. Curr. Opin. Biotechnol. 4: 211-216 (1993).

Liao JC, Delgado J. Dynamic metabolic control theory. A methodology for investigating metabolic regulation using transient metabolic data. Ann. N.Y. Acad. Sci. 665: 27-38 (1992).

Liao JC, Delgado J. Flux calculation using metabolic control constraints. Biotechnol. Prog. 14: 554-560 (1998).

Liao JC, Hou SY, Chao YP. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52: 129-140 (1996).

Liao JC, Lightfoot EN Jr. Extending the quasi-steady state concept to analysis of metabolic networks. J. Theor. Biol. 126: 253-273 (1987).

Liao JC, Oh MK. Toward predicting metabolic fluxes in metabolically engineered strains. Metab. Eng. 1: 214-223 (1999).

Libourel IG, Gehan JP, Shachar-Hill Y. Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos Phytochemistry 68: 2211-2221 (2007).

Libourel IG, Shachar-Hill Y. Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu. Rev. Plant Biol. 59: 625-650 (2008).

Liepman AH, Olsen LI. Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit. Rev. Plant Sci. 23: 73-89 (2004).

Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl. Environ. Microbiol. 75: 3765-3776 (2009).

Lin H, Bennett GN, San KY. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab. Eng. 7: 337-352 (2005).

Lin H, Bennett GN, San KY. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7: 116-127 (2005).

Lin Y, Si D, Zhang Z, Liu C. An integrated metabonomic method for profiling of metabolic changes in carbon tetrachloride induced rat urine. Toxicology 256: 191-200 (2009).

Lin YH, Bayrock D, Ingledew WM. Metabolic flux variation of Saccharomyces cerevisiae cultivated in a multistage continuous stirred tank reactor fermentation environment. Biotechnol. Prog. 17: 1055-1060 (2001).

Liscombe DK, Facchini PJ. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr. Opin. Biotechnol. 19: 173-180 (2008).

Liu CJ, Blount JW, Steele CL, Dixon RA. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 99: 14578-14583 (2002).

Liu CZ, Cheng XY. Enhancement of phenylethanoid glycosides biosynthesis in cell cultures of Cistanche deserticola by osmotic stress. Plant Cell Rep. 27: 357-362 (2008).

Liu L, Li Y, Zhu Y, Du G, Chen J. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab. Eng. 9: 21-29 (2007).

Liu PK, Wang FS. Inference of biochemical network models in S-system using multiobjective optimization approach. Bioinformatics 24: 1085-1092 (2008).

Liu Q, Jiang C, Xu Z, Xu H, Zhao R, Qiao D, Cao Y. Analysis of protein interaction network and function of Staphylococcus aureus. Wei Sheng Wu Xue Bao 49: 56-63 (2009).

Liu R, Hu Y, Li J, Lin Z. Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab. Eng. 9: 1-7 (2007).

Llaneras F, Pico J. An interval approach for dealing with flux distributions and elementary modes activity patterns. J. Theor. Biol. 246: 290-308 (2007).

LoDuca PA, Hoffman BE, Herzog RW. Hepatic gene transfer as a means of tolerance induction to transgene products. Curr. Gene Ther. 9: 104-114 (2009).

Loew LM, Schaff JC. The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19: 401-406 (2001).

Loos A, Glanemann C, Willis LB, O'Brien XM, Lessard PA, Gerstmeir R, Guillouet S, Sinskey AJ. Development and validation of Corynebacterium DNA microarrays. Appl. Environ. Microbiol. 67: 2310-2318 (2001).

Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180: 3804-3808 (1998).

Lu C, Mansoorabadi K, Jeffries T. Comparison of multiple gene assembly methods for metabolic engineering. Appl. Biochem. Biotechnol. 137-140: 703-10 (2007).

Lu K, Ye W, Gold A, Ball LM, Swenberg JA. Formation of S-[1-(N2-deoxyguanosinyl)methyl]glutathione between glutathione and DNA induced by formaldehyde. J. Am. Chem. Soc. 131: 3414-3415 (2009).

Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J. Theor. Biol. 254: 466-475 (2008).

Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778-785 (2008).

Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10: 333-339 (2008).

Lucker J, Schwab W, Franssen MC, Van Der Plas LH, Bouwmeester HJ, Verhoeven HA. Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J. 39: 135-145 (2004).

Lucker J, Schwab W, van Hautum B, Blaas J, van der Plas LH, Bouwmeester HJ, Verhoeven HA. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 134: 510-519 (2004).

Lundstrom K. Latest development in drug discovery on G protein-coupled receptors. Curr. Protein Pept. Sci. 7: 465-470 (2006).

Luo YE, Fan DD, Shang LA, Shi HJ, Ma XX, Mi Y, Zhao GF. Analysis of metabolic flux in Escherichia coli expressing human-like collagen in fed-batch culture. Biotechnol. Lett. 30: 637-643 (2008).

Luzhetskyy A, Bechthold A. Features and applications of bacterial glycosyltransferases: current state and prospects. Appl. Microbiol. Biotechnol. 80: 945-952 (2008).

Lynch MD, Gill RT, Stephanopoulos G. Mapping phenotypic landscapes using DNA micro-arrays. Metab. Eng. 6: 177-185 (2004).

Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering. Biotechnol. Prog. 15: 777-793 (1999).

Lytovchenko A, Sonnewald U, Fernie AR. The complex network of non-cellulosic carbohydrate metabolism. Curr. Opin. Plant Biol. 10: 227-235 (2007).

Ma QH. Genetic engineering of cytokinins and their application to agriculture. Crit. Rev. Biotechnol. 28: 213-232 (2008).

Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional C-13 labeling of common amino acids. Eur. J. Biochem. 268: 2464-2479 (2001).

Maczek J, Junne S, Nowak P, Goetz P. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae. Bioprocess. Biosyst. Eng. 29: 241-252 (2006).

Maddula S, Blank LM, Schmid A, Baumbach JI. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal. Bioanal. Chem. 394: 791-800 (2009).

Madison LL, Huisman GW. Metabolic engineering of Poly(3-Hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53 (1999).

Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83: 1331-1340 (2002).

Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. U.S.A. 98: 8915-8920 (2001).

Mahmoud SS, Williams M, Croteau R. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65: 547-554 (2004).

Maier K, Hofmann U, Reuss M, Mauch K. Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part II. Flux estimation. Biotechnol. Bioeng. 100: 355-370 (2008).

Majeran W, van Wijk KJ. Cell-type-specific differentiation of chloroplasts in C4 plants. Trends Plant Sci. 14: 100-109 (2009).

Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteomics 7: 1609-1638 (2008).

Maletic-Savatic M, Vingara LK, Manganas LN, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul ME, Henn F, Krupp L, Enikolopov G, Benveniste H, Djuric PM, Pelczer I. Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb. Symp. Quant. Biol. 73: 389-401 (2008).

Maliga P. Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5: 164-172 (2002).

Maliga P, Graham I. Molecular farming and metabolic engineering promise a new generation of high-tech crops. Curr. Opin. Plant Biol. 7: 149-151 (2004).

Mamun AN. Reversible male sterility in transgenic tobacco carrying a dominant-negative mutated glutamine synthetase gene under the control of microspore-specific promoter. Indian J. Exp. Biol. 45: 1022-1030 (2007).

Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW. Examination of primary metabolic pathways in a murine hybridoma with C-13 nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 44: 563-585 (1994).

Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW. Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11: 559-565 (2006).

Mao Z, Shin HD, Chen R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84: 63-69 (2009).

Mapelli V, Olsson L, Nielsen J. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol. 26: 490-497 (2008).

Maranas CD, Burgard AP. Web site review: review of EcoCyc and MetaCyc databases. Metab. Eng. 3: 98-99 (2001).

Marin-Sanguino A, Torres NV, Mendoza ER, Oesterhelt D. Metabolic engineering with power-law and linear-logarithmic systems. Math. Biosci. 218: 50-58 (2009).

Martens S, Mithofer A. Flavones and flavone synthases. Phytochemistry 66: 2399-2407 (2005).

Martin CH, Nielsen DR, Solomon KV, Prather KL. Synthetic metabolism: engineering biology at the protein and pathway scales. Chem. Biol. 16: 277-286 (2009).

Martinez I, Zhu J, Lin H, Bennett GN, San KY. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10: 352-359 (2008).

Massiah A. Physiology and metabolism - web alert. Curr. Opin. Plant Biol. 3: 177-178 (2000).

Mattanovich D, Kramer W, Luttich C, Weik R, Bayer K, Katinger H. Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58: 296-298 (1998).

Matthews PD, Wurtzel ET. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396-400 (2000).

Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL. NMR spectroscopy based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 142: 1759-1770 (2006).

Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Archaeal proteasomes: potential in metabolic engineering. Metab. Eng. 5: 151-163 (2003).

Mazumdar V, Snitkin E, Amar S, Segre D. Metabolic network model of a human oral pathogen. J. Bacteriol. 191: 74-90 (2009).

McCaskill D, Croteau R. Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat. Biotechnol. 17: 31-36 (1999).

McIntyre M, Muller C, Dynesen J, Nielsen J. Metabolic engineering of the morphology of Aspergillus. Adv. Biochem. Eng. Biotechnol. 73: 103-128 (2001).

McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab. Eng. 9: 177-192 (2007).

McNeil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 120: 945-950 (1999).

McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD. Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol. 123: 371-380 (2000).

McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 98: 10001-10005 (2001).

McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD. Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol. 124: 153-162 (2000).

Meadows AL, Roy S, Clark DS, Blanch HW. Optimal design of metabolic flux analysis experiments for anchorage-dependent mammalian cells using a cellular automaton model. Biotechnol. Bioeng. 98: 221-229 (2007).

Memelink J. Tailoring the plant metabolome without a loose stitch. Trends Plant Sci. 10: 305-307 (2005).

Memelink J, Menkw FL, van der Fits L, Kijne JW. Chapter 6. Transcriptional Regulators to Modify Secondary Metabolism. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 111-125 (2000).

Mendes P, Kell D. Making cells work--metabolic engineering for everyone. Trends Biotechnol. 15: 6-7 (1997).

Mendes P, Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883 (1998).

Mendes P, Kell DB. Numerical optimization and simulation for rational metabolic engineering. In (C Larsson, IL Pahlman, L Gustaffson eds) "BioThermoKinetics in the Post Genomic Era", Chalmers Reproservice, Goteborg, pp. 345-349 (1998).

Menzel K, Ahrens K, Zeng A, Deckwer W. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng. 60: 617-626 (1998).

Merkulov S, van Assema F, Springer J, Fernandez Del Carmen A, Mooibroek H. Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation. Yeast 16: 197-206 (2000).

Meynial Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P. Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab. Eng. 9: 152-159 (2007).

Mhaskar P, Hjortso MA, Henson MA. Cell population modeling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Biotechnol. Prog. 18: 1010-1026 (2002).

Michalodimitrakis K, Isalan M. Engineering prokaryotic gene circuits. FEMS Microbiol. Rev. 33: 27-37 (2009).

Michel-Reydellet N, Calhoun K, Swartz J. Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng. 6: 197-203 (2004).

Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol. Bioeng. 83: 627-637 (2003).

Mijts BN, Schmidt-Dannert C. Engineering of secondary metabolite pathways. Curr. Opin. Biotechnol. 14: 597-602 (2003).

Mikkelsen MD, Halkier BA. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from cassava. Plant Physiol. 131: 773-779 (2003).

Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22: 279-295 (2002).

Min Lee J, Gianchandani EP, Eddy JA, Papin JA. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4: e1000086 (2008).

Misawa N, Shimada H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59: 169-181 (1997).

Miyazawa M, Sakata K. Biotransformation of (+)-cycloisolongifolol by plant pathogenic fungus Glomerella cingulata. Nat. Prod. Res. 21: 455-460 (2007).

Mo ML, Palsson BO. Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol. 27: 37-44 (2009).

Modak J, Deckwer WD, Zeng AP. Metabolic control analysis of eucaryotic pyruvate dehydrogenase multienzyme complex. Biotechnol. Prog. 18: 1157-1169 (2002).

Modre-Osprian R, Osprian I, Tilg B, Schreier G, Weinberger KM, Graber A. Dynamic simulations on the mitochondrial fatty acid beta-oxidation network. BMC Syst. Biol. 3: 2 (2009).

Mokhbi Soukane D, Shirazi-Adl A, Urban JP. Investigation of solute concentrations in a 3D model of intervertebral disc. Eur. Spine J. 18: 254-262 (2009).

Mooibroek H, Cornish K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 53: 355-365 (2000).

Mooney BP, Miernyk JA, Randall DD. The complex fate of alpha-ketoacids. Annu. Rev. Plant Biol. 53: 357-375 (2002).

Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM. Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci. 14: 110-117 (2009).

Moorhead KT, Chase JG, David T, Arnold J. Metabolic model of autoregulation in the Circle of Willis. J. Biomech. Eng. 128: 462-466 (2006).

Morandini P, Salamini F. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci. 8: 70-75 (2003).

Morant M, Bak S, Moller BL, Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotechnol. 14: 151-162 (2003).

Morbiducci U, Andrea Tura, Grigioni M. Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism. Comput. Biol. Med. 35: 862-874 (2005).

Morgan JA, Rhodes D. Mathematical modeling of plant metabolic pathways. Metab. Eng. 4: 80-89 (2002).

Morgan JA, Shanks JV. Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J. Biotechnol. 79: 137-145 (2000).

Morgan JA, Shanks JV. Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metab. Eng. 4: 257-262 (2002).

Morris WL, Ducreux LJ, Hedden P, Millam S, Taylor MA. Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J. Exp. Bot. 57: 3007-3018 (2006).

Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc. Natl. Acad. Sci. U.S.A. 106: 6477-6482 (2009).

Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD. Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19: 228-234 (2008).

Muller C, McIntyre M, Hansen K, Nielsen J. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl. Environ. Microbiol. 68: 1827-1836 (2002).

Muller D, Katinger H, Grillari J. MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol. 26: 359-365 (2008).

Muller U, van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans A, Townsend CA, Sonke T, Bovenberg R, Wubbolts M. Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine (D-Phg). Metab. Eng. 8: 196-208 (2006).

Munoz-Bertomeu J, Arrillaga I, Ros R, Segura J. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142: 890-900 (2006).

Muralidharan V, Rinker KD, Hirsh IS, Bouwer EJ, Kelly RM. Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. Biotechnol. Bioeng. 56: 268-278 (1997).

Naeimpoor F, Mavituna F. Metabolic flux analysis in Streptomyces coelicolor under various nutrient limitations. Metab. Eng. 2: 140-148 (2000).

Nakajima M, Nishino Y, Tamura M, Mase K, Masai E, Otsuka Y, Nakamura M, Sato K, Fukuda M, Shigehara K, Ohara S, Katayama Y, Kajita S. Microbial conversion of glucose to a novel chemical building block, 2-pyrone-4,6-dicarboxylic acid. Metab. Eng. 11: 213-220 (2009).

Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454-459 (2003).

Nam H, Lee J, Lee D. Computational identification of altered metabolism using gene expression and metabolic pathways. Biotechnol. Bioeng. 103: 835-843 (2009).

Nam H, Ryu T, Lee K, Kim S, Lee D. Computational identification of significantly regulated metabolic reactions by integration of data on enzyme activity and gene expression. BMB Rep. 41: 609-614 (2008).

Namjoshi AA, Hu WS, Ramkrishna D. Unveiling steady-state multiplicity in hybridoma cultures: The cybernetic approach. Biotechnol. Bioeng. 81: 80-91 (2003).

Naoumkina MA, He X, Dixon RA. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol. 8: 132 (2008).

Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol. 133: 63-72 (2003).

Nelson DE, Shen B, Bohnert HJ. Salinity tolerance--mechanisms, models and the metabolic engineering of complex traits. Genet. Eng. (N.Y.) 20: 153-176 (1998).

Neubauer P, Lin HY, Mathiszik B. Metabolic load of recombinant protein production: Inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol. Bioeng. 83: 53-64 (2003).

Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72: 379-412 (2008).

Nguyen HT, Dieterich A, Athenstaedt K, Truong NH, Stahl U, Nevoigt E. Engineering of Saccharomyces cerevisiae for the production of l-glycerol 3-phosphate. Metab. Eng. 6: 155-163 (2004).

Nielsen J. The role of metabolic engineering in the production of secondary metabolites. Curr. Opin. Microbiol. 1: 330-336 (1998).

Nielsen J. Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol. Bioeng. 58: 125-132 (1998).

Nielsen J. Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263-283 (2001).

Nims E, Dubois CP, Roberts SC, Walker EL. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab. Eng. 8: 385-394 (2006).

Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2: 69-77 (2000).

No authors listed. Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses. Tsitol. Genet. 42: 70-84 (2008).

Nocker A, Camper AK. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 291: 137-142 (2009).

Noel JP, Austin MB, Bomati EK. Structure-function relationships in plant phenylpropanoid biosynthesis. Curr. Opin. Plant Biol. 8: 249-253 (2005).

Nogales J, Palsson BO, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst. Biol. 2: 79 (2008).

Noh K, Wahl A, Wiechert W. Computational tools for isotopically instationary (13)C labeling experiments under metabolic steady state conditions. Metab. Eng. 8: 554-577 (2006).

Noh K, Wiechert W. Experimental design principles for isotopically in stationary 13C labeling experiments. Biotechnol. Bioeng. 94: 234-251 (2006).

Noirel J, Ow SY, Sanguinetti G, Jaramillo A, Wright PC. Automated extraction of meaningful pathways from quantitative proteomics data. Brief. Funct. Genomic. Proteomic. 7: 136-146 (2008).

Nolan RP, Fenley AP, Lee K. Identification of distributed metabolic objectives in the hypermetabolic liver by flux and energy balance analysis. Metab. Eng. 8: 30-45 (2006).

Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst. Biol. 2: 71 (2008).

Nookaew I, Meechai A, Thammarongtham C, Laoteng K, Ruanglek V, Cheevadhanarak S, Nielsen J, Bhumiratana S. Identification of flux regulation coefficients from elementary flux modes: a systems biology tool for analysis of metabolic networks. Biotechnol. Bioeng. 97: 1535-1549 (2007).

Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 151: 1409-1419 (2005).

Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G. Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab. Eng. 2: 300-311 (2000).

Nuccio ML, Rhodes D, McNeil SD, Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2: 128-134 (1999).

Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 16: 487-496 (1998).

O'Callaghan PM, James DC. Systems biotechnology of mammalian cell factories. Brief. Funct. Genomic. Proteomic. 7: 95-110 (2008).

O'Neill MA, Hilgetag CC. The portable UNIX programming system (PUPS) and CANTOR: a computational environment for dynamical representation and analysis of complex neurobiological data. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356: 1259-1276 (2001).

Oberhardt MA, Chavali AK, Papin JA. Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol. Biol. 500: 61-80 (2009).

Oda Y, Hirayama T, Watanabe T. Genotoxic activation of the environmental pollutant 3,6-dinitrobenzo[e]pyrene in Salmonella typhimurium umu strains expressing human cytochrome P450 and N-acetyltransferase. Toxicol. Lett. 188: 258-262 (2009).

Oh IJ, Lee HW, Park CH, Lee SY, Lee J. Succinic acid production from continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 18: 908-912 (2008).

Oh MK, Liao JC. DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab. Eng. 2: 201-209 (2000).

Oh MK, Rohlin L, Kao KC, Liao JC. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277: 13175-13183 (2002).

Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem. 282: 28791-28799 (2007).

Ohlrogge J. Plant metabolic engineering: are we ready for phase two? Curr. Opin. Plant Biol. 2: 121-122 (1999).

Ojima Y, Komaki M, Nishioka M, Iwatani S, Tsujimoto N, Taya M. Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli. Biotechnol. Lett. 31: 525-530 (2009).

Okamoto M, Morita Y, Tominaga D, Tanaka K, Kinoshita N, Ueno JI, Miura Y, Maki Y, Eguchi Y. Toward a virtual-labo-system for metabolic engineering: development of biochemical engineering system analyzing tool-kit (BEST-KIT). Pac. Symp. Biocomput. 1997: 304-315 (1997).

Oksman-Caldentey KM, Arroo R. Chapter 13. Regulation of Tropane Alkaloid Metabolism in Plants an Plant Cell Cultures. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 253-281 (2000).

Oksman-Caldentey KM, Saito K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr. Opin. Biotechnol. 16: 174-179 (2005).

Olano C, Lombo F, Mendez C, Salas JA. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 10: 281-292 (2008).

Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol. Prog. 20: 1623-1633 (2004).

Oliveira AP, Nielsen J, Forster J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5: 39 (2005).

Oliver DJ, Nikolau B, Wurtele ES. Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab. Eng. 4: 98-106 (2002).

Olsson L, Nielsen J. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb. Technol. 26: 785-792 (2000).

Ong LC, Lin YH. Metabolite profiles and growth characteristics of Rhizobium meliloti cultivated at different specific growth rates. Biotechnol. Prog. 19: 714-719 (2003).

Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. U.S.A. 103: 11075-11080 (2006).

Ostergaard S, Olsson L, Johnston M, Nielsen J. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286 (2000).

Ostergaard S, Olsson L, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64: 34-50 (2000).

Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjo K, Wright PC. Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J. Proteome Res. 8: 187-198 (2009).

Palazon J, Navarro-Ocana A, Hernandez-Vazquez L, Mirjalili MH. Application of metabolic engineering to the production of scopolamine. Molecules 13: 1722-1742 (2008).

Palsson BO, Lee ID. Model complexity has a significant effect on the numerical value and interpretation of metabolic sensitivity coefficients. J. Theor. Biol. 161: 299-315 (1993).

Palsson BO, Price ND, Papin JA. Development of network-based pathway definitions: the need to analyze real metabolic networks. Trends Biotechnol. 21: 195-198 (2003).

Palva ET, Thtiharju S, Tamminen I, Puhakainen T, Laitinen R, Svensson J, Helenius E, Heino P. Biological mechanisms of low temperature stress response: cold acclimation and development of freezing tolerance in plants. JIRCAS Working Report No.23, "Genetic Engineering of Crop Plants for Abiotic Stress" (Iwanaga M, ed.) p. 9-15 (2002).

Pan X, Chen M, Liu Y, Wang Q, Zeng L, Li L, Liao Z. A new isopentenyl diphosphate isomerase gene from Camptotheca acuminata: cloning, characterization and functional expression in Escherichia coli. DNA Seq. 19: 98-105 (2008).

Panagiotou G, Andersen MR, Grotkjaer T, Regueira TB, Nielsen J, Olsson L. Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools. Appl. Environ. Microbiol. 75: 2212-2220 (2009).

Panagiotou G, Christakopoulos P, Grotkjaer T, Olsson L. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose. Metab. Eng. 8: 474-482 (2006).

Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol. Rev. 33: 324-375 (2009).

Pandhal J, Ow SY, Wright PC, Biggs CA. Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J. Proteome Res. 8: 818-828 (2009).

Pandhal J, Snijders AP, Wright PC, Biggs CA. A cross-species quantitative proteomic study of salt adaptation in a halotolerant environmental isolate using (15)N metabolic labelling. Proteomics 8: 2266-2284 (2008).

Pandhal J, Wright PC, Biggs CA. Proteomics with a pinch of salt: a cyanobacterial perspective. Saline Systems 4: 1 (2008).

Papin JA, Price ND, Edwards JS, Palsson BO. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215: 67-82 (2002).

Papin JA, Price ND, Palsson BO. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res. 12: 1889-1900 (2002).

Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28: 250-258 (2003).

Paradise EM, Kirby J, Chan R, Keasling JD. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol. Bioeng. 100: 371-378 (2008).

Paredes C, Prats E, Cairo JJ, Azorin F, Cornudella L, Godia F. Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology 30: 85-93 (1999).

Park EJ, Jeknic Z, Sakamoto A, Denoma J, Yuwansiri R, Murata N, Chen TH. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J. 40: 474-487 (2004).

Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Curr. Opin. Biotechnol. 19: 454-460 (2008).

Park JH, Lee SY, Kim TY, Kim HU. Application of systems biology for bioprocess development. Trends Biotechnol. 26: 404-412 (2008).

Park JS, Kim JB, Cho KJ, Cheon CI, Sung MK, Choung MG, Roh KH. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep. 27: 985-994 (2008).

Park SM, Klapa MI, Sinskey AJ, Stephanopoulos G. Metabolite and isotopomer balancing in the analysis of metabolic cycles: II. Applications. Biotechnol. Bioeng. 62: 392-401 (1999).

Park SM, Shaw-Reid C, Sinskey AJ, Stephanopoulos G. Elucidation of anaplerotic pathways in Corynebacterium glutamicum via 13C-NMR spectroscopy and GC-MS. Appl. Microbiol. Biotechnol. 47: 430-440 (1997).

Park SM, Sinskey AJ, Stephanopoulos G. Metabolic and physiological studies of Corynebacterium glutamicum mutants. Biotechnol. Bioeng. 55: 864-879 (1997).

Park SU, Yu M, Facchini PJ. Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Mol. Biol. 51: 153-164 (2003).

Park SU, Yu M, Facchini PJ. Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol. 128: 696-706 (2002).

Patil KR, Akesson M, Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15: 64-69 (2004).

Patra F, Tomar SK, Arora S. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J. Food Sci. 74: R16-R23 (2009).

Pavan A, Thomaseth K, Valerio A. Modeling population kinetics of free fatty acids in isolated rat hepatocytes using Markov Chain Monte Carlo. Ann. Biomed. Eng. 31: 854-866 (2003).

Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl. 1: S215-S224 (2001).

Pedersen MG, Bersani AM. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. Mar 31 [Epub ahead of print] (2009).

Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY. Transient effects of overexpressing anthranilate synthase alpha and beta subunits in Catharanthus roseus hairy roots. Biotechnol. Prog. 21: 1572-1576 (2005).

Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnol. Bioeng. 93: 534-540 (2006).

Peel GJ, Pang Y, Modolo LV, Dixon RA. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J. 59: 136-149 (2009).

Perrin RM, Wigge PA. Physiology and metabolism: Web alert. Curr. Opin. Plant Biol. 4: 177-178 (2001).

Peterhansel C, Niessen M, Kebeish RM. Metabolic engineering towards the enhancement of photosynthesis. Photochem. Photobiol. 84: 1317-1323 (2008).

Petersen BL, Andreasson E, Bak S, Agerbirk N, Halkier BA. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212: 612-618 (2001).

Petersen S, Mack C, De Graaf AA, Riedel C, Eikmanns BJ, Sahm H. Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab. Eng. 3: 344-361 (2001).

Peterson JD, Ingram LO. Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann. N. Y. Acad. Sci. 1125: 363-372 (2008).

Petkov SB, Maranas CD. Quantitative assessment of uncertainty in the optimization of metabolic pathways. Biotechnol. Bioeng. 56: 145-161 (1997).

Petranovic D, Nielsen J. Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol. 26: 584-590 (2008).

Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7: 9 (2008).

Pfefferle W, Mockel B, Bathe B, Marx A. Biotechnological manufacture of lysine. Adv. Biochem. Eng. Biotechnol. 79: 59-112 (2003).

Pfleger BF, Pitera DJ, Newman JD, Martin VJ, Keasling JD. Microbial sensors for small molecules: development of a mevalonate biosensor. Metab. Eng. 9: 30-38 (2007).

Phair RD. Development of kinetic models in the nonlinear world of molecular cell biology. Metabolism 46: 1489-1495 (1997).

Phalakornkule C, Fry B, Zhu T, Kopesel R, Ataai MM, Domach MM. 13C NMR evidence for pyruvate kinase flux attenuation underlying suppressed acid formation in Bacillus subtilis. Biotechnol. Prog. 16: 169-175 (2000).

Phalakornkule C, Lee S, Zhu T, Koepsel R, Ataai MM, Grossmann IE, Domach MM. A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab. Eng. 3: 124-137 (2001).

Pham VD, Palden T, DeLong EF. Large-scale screens of metagenomic libraries. J. Vis. Exp. 2007: 201 (2007).

Pichersky E, Dudareva N. Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol. 25: 105-110 (2007).

Piepersberg W. Pathway engineering in secondary metabolite-producing actinomycetes. Crit. Rev. Biotechnol. 14: 251-285 (1994).

Pines O, Shemesh S, Battat E, Goldberg I. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 248-255 (1997).

Pir P, Kirdar B, Hayes A, Onsan ZI, Ulgen KO, Oliver SG. Exometabolic and transcriptional response in relation to phenotype and gene copy number in respiration-related deletion mutants of S. cerevisiae. Yeast 25: 661-672 (2008).

Pirkov I, Albers E, Norbeck J, Larsson C. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab. Eng. 10: 276-280 (2008).

Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61: 3967-3971 (1995).

Poirier Y. Production of new polymeric compounds in plants. Curr. Opin. Biotechnol. 10: 181-185 (1999).

Pool WA, Neves AR, Kok J, Santos H, Kuipers OP. Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Metab. Eng. 8: 456-464 (2006).

Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol. 65: 4211-4215 (1999).

Portmann C, Prestinari C, Myers T, Scharte J, Gademann K. Directed biosynthesis of phytotoxic alkaloids in the cyanobacterium Nostoc 78-12A. Chembiochem. 10: 889-895 (2009).

Potts M. Desiccation tolerance: a simple process? Trends Microbiol. 9: 553-559 (2001).

Pramanik J, Keasling JD. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56: 398-421 (1997).

Prather KL, Martin CH. De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin. Biotechnol. 19: 468-474 (2008).

Prati EG, Matasci M, Suter TB, Dinter A, Sburlati AR, Bailey JE. Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 68: 239-244 (2000).

Price ND, Papin JA, Palsson BO. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. 12: 760-769 (2002).

Price ND, Papin JA, Schilling CH, Palsson BO. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21: 162-169 (2003).

Price ND, Reed JL, Papin JA, Famili I, Palsson BO. Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys. J. 84: 794-804 (2003).

Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BO. Network-based analysis of metabolic regulation in the human red blood cell. J. Theor. Biol. 225: 185-194 (2003).

Price ND, Schellenberger J, Palsson BO. Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys. J. 87: 2172-2186 (2004).

Price ND, Thiele I, Palsson BO. Candidate states of Helicobacter pylori's genome-scale metabolic network upon application of "loop law" thermodynamic constraints. Biophys. J. 90: 3919-3928 (2006).

Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb. Cell Fact. 7: 25 (2008).

Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins Dos Santos VA. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 4: e1000210 (2008).

Qian ZG, Xia XX, Choi JH, Lee SY. Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 101: 587-601 (2008).

Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell. Res. 17: 471-482 (2007).

Quesada-Vargas T, Ruiz ON, Daniell H. Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physiol. 138: 1746-1762 (2005).

R Poulsen B, Nohr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J. 272: 1313-1325 (2005).

Raghunathan A, Price ND, Galperin MY, Makarova KS, Purvine S, Picone AF, Cherny T, Xie T, Reilly TJ, Munson R Jr, Tyler RE, Akerley BJ, Smith AL, Palsson BO, Kolker E. In silico metabolic model and protein expression of Haemophilus influenzae strain Rd KW20 in rich medium. OMICS 8: 25-41 (2004).

Rahib L, Sriram G, Harada MK, Liao JC, Dipple KM. Transcriptomic and network component analysis of glycerol kinase in skeletal muscle using a mouse model of glycerol kinase deficiency. Mol. Genet. Metab. 96: 106-112 (2009).

Rahman M, Hasan MR, Shimizu K. Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnol. Lett. 30: 853-860 (2008).

Rahman M, Shimizu K. Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Mol. Biosyst. 4: 160-169 (2008).

Raiford DW, Heizer EM Jr, Miller RV, Akashi H, Raymer ML, Krane DE. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae? J. Mol. Evol. 67: 621-630 (2008).

Rais B, Chassagnole C, Mazat JP. Control of threonine pathway in E. coli. Application to biotechnologies. Acta Biotheor. 43: 285-297 (1995).

Ralley L, Enfissi EM, Misawa N, Schuch W, Bramley PM, Fraser PD. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 39: 477-486 (2004).

Ralston L, Subramanian S, Matsuno M, Yu O. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol. 137: 1375-1388 (2005).

Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: R695-R704 (2001).

Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One. 4: e5271 (2009).

Raman K, Chandra N. Flux balance analysis of biological systems: applications and challenges. Brief. Bioinform. 10: 435-449 (2009).

Ramos RLB, Tovar FJ, Junqueira RM, Lino FB, Sachetto-Martins G. Sugarcane expressed sequences tags (ESTs) encoding enzymes involved in lignin biosynthesis pathways. Genet. Mol. Biol. 24: 235-241 (2001).

Ratcliffe RG, Shachar-Hill Y . Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 499-526 (2001).

Ratcliffe RG, Shachar-Hill Y. Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol. Rev. Camb. Philos. Soc. 80: 27-43 (2005).

Rathinasabapathi B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. (Lond.) 86: 709-716 (2000).

Rathinasabapathi B, Fouad WM, Sigua CA. beta-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol. 126: 1241-1249 (2001).

Rathinasabapathi B, McCue KF, Gage DA, Hanson AD. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193: 155-162 (1994).

Reddy VN, Mavrovouniotis ML, Liebman MN. Petri net representations in metabolic pathways. Ismb 1: 328-336 (1993).

Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, Bui OT, Knight EM, Fong SS, Palsson BO. Systems approach to refining genome annotation. Proc. Natl. Acad. Sci. U.S.A. 103: 17480-17484 (2006).

Rees DC. Great metalloclusters in enzymology. Annu. Rev. Biochem. 71: 221-246 (2002).

Reeves AR, Cernota WH, Brikun IA, Wesley RK, Mark Weber J. Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab. Eng. 6: 300-312 (2004).

Regan L, Gregory M. Flux analysis of microbial metabolic pathways using a visual programming environment. J. Biotechnol. 42: 151-161 (1995).

Reinecke F, Steinbuchel A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J. Mol. Microbiol. Biotechnol. 16: 91-108 (2009).

Rhodes D, McNeil SD, Nuccio ML, Hanson AD. Metabolic engineering and flux analysis of glycine betaine synthesis in plants: progress and prospects. In (BN Kholodenko, HV Westerhoff, eds.) "Metabolic Engineering in the Post Genomic Era", Horizon Bioscience, Wymondham, Norfolk, U.K., pp. 409-434 (2004).

Rhodes D, Peel GJ, Dudareva N. Metabolism, secondary: engineering pathways of. In (RM Goodman, ed) Encyclopedia of Plant and Crop Science, Marcell Dekker, N.Y., pp. 720-723 (2004).

Ribarits A, Mamun AN, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A. Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol. J. 5: 483-494 (2007).

Ridley CP, Lee HY, Khosla C. Evolution of polyketide synthases in bacteria. Proc. Natl. Acad. Sci. U.S.A. 105: 4595-4600 (2008).

Rijhwani SK, Ho CH, Shanks JV. In vivo 31P and multilabel 13C NMR measurements for evaluation of plant metabolic pathways. Metab. Eng. 1: 12-25 (1999).

Ringenberg M, Lichtensteiger C, Vimr E. Redirection of sialic acid metabolism in genetically engineered Escherichia coli. Glycobiology 11: 533-539 (2001).

Rios-Estepa R, Lange BM. Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68: 2351-2374 (2007).

Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc. Natl. Acad. Sci. U.S.A. 105: 2818-2823 (2008).

Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inze D, Oksman-Caldentey KM, Goossens A. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. U.S.A. 103: 5614-5619 (2006).

Rivas B, Torre P, Domínguez JM, Converti A. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Biotechnol. Bioeng. 102: 1062-1073 (2009).

Rizzi M, Baltes M, Theobald U, Reuss M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 2. Mathematical model. Biotechnol. Bioeng. 55: 592-608 (1997).

Robbins MP, Morris P. Chapter 8. Metabolic Engineering of Condensed Tannins and Other Phenolic Pathways in Forage and Fodder Crops. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 165-177 (2000).

Roberts JKM. NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci. 5: 30-34 (2000).

Roca C, Nielsen J, Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyes cerevisiae improves ethanol production. Appl. Environ. Microbiol. 69: 4732-4736 (2003).

Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, Patil K, Nielsen J, Rocha I. Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9: 499 (2008).

Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MC. Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng. 93: 592-606 (2006).

Rodríguez-Prados JC, de Atauri P, Maury J, Ortega F, Portais JC, Chassagnole C, Acerenza L, Lindley ND, Cascante M. In silico strategy to rationally engineer metabolite production: a case study for threonine in Escherichia coli. Biotechnol. Bioeng. 103: 609-620 (2009).

Roemer RB, Terry LI, Walter GH. Unstable, self-limiting thermochemical temperature oscillations in Macrozamia cycads. Plant Cell Environ. 31: 769-782 (2008).

Rohlin L, Oh M, Liao JC. Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr. Opin. Microbiol. 4: 330-335 (2001).

Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot. 54: 513-524 (2003).

Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR, Hanson AD. Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo. J. Biol. Chem. 277: 4056-4061 (2002).

Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng. 4: 49-56 (2002).

Rontein D, Rhodes D, Hanson AD. Evidence from engineering that decarboxylation of free serine is the major source of ethanolamine moieties in plants. Plant Cell Physiol. 44: 1185-1191 (2003).

Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 24: 413-420 (2000).

Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430-436 (2008).

Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, and insulin: an extended "minimal model". Diabetes Technol. Ther. 8: 617-626 (2006).

Rud I, Solem C, Jensen PR, Axelsson L, Naterstad K. Co-factor engineering in lactobacilli: effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus (L.) plantarum and L. sakei. Metab. Eng. 10: 207-215 (2008).

Ruffing A, Mao Z, Ruizhen Chen R. Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. Metab. Eng. 8: 465-473 (2006).

Runguphan W, Maresh JJ, O'Connor SE. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proc. Natl. Acad. Sci. U.S.A. 106: 13673-13678 (2009).

Runguphan W, O'Connor SE. Metabolic reprogramming of periwinkle plant culture. Nat. Chem. Biol. 5: 151-153 (2009).

Rylott EL, Bruce NC. Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol. 27: 73-81 (2009).

Ryu DD, Nam DH. Recent progress in biomolecular engineering. Biotechnol. Prog. 16: 2-16 (2000).

Sahm H, Eggeling L, de Graaf AA. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem. 381: 899-910 (2000).

Sahm H, Eggeling L, Morbach S, Eikmanns B. Construction of L-isoleucine overproducing strains of Corynebacterium glutamicum. Naturwissenschaften 86: 33-38 (1999).

Sainz J, Pizarro F, Perez-Correa JR, Agosin E. Modeling of yeast metabolism and process dynamics in batch fermentation. Biotechnol. Bioeng. 81: 818-828 (2003).

Sakamoto A, Murata A, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38: 1011-1019 (1998).

Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot. 51: 81-88 (2000).

Salusjarvi L, Kankainen M, Soliymani R, Pitkanen JP, Penttila M, Ruohonen L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 7: 18 (2008).

San KY, Bennett GN, Berrios-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab. Eng. 4: 182-192 (2002).

Sanchez AM, Bennett GN, San KY. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab. Eng. 8: 209-226 (2006).

Sanchez AM, Bennett GN, San KY. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7: 229-239 (2005).

Sandhu KS, Pandey S, Maiti S, Pillai B. GASCO: genetic algorithm simulation for codon optimization. In Silico Biol. 8: 187-192 (2008).

Sandmann G, Romer S, Fraser PD. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab. Eng. 8: 291-302 (2006).

Sanford K, Soucaille P, Whited G, Chotani G. Genomics to fluxomics and physiomics - pathway engineering. Curr. Opin. Microbiol. 5: 318-322 (2002).

Sariyar B, Perk S, Akman U, Hortacsu A. Monte Carlo sampling and principal component analysis of flux distributions yield topological and modular information on metabolic networks. J. Theor. Biol. 242: 389-400 (2006).

Sariyar-Akbulut B, Salman-Dilgimen A, Ceylan S, Perk S, Denizci AA, Kazan D. Preliminary phenotypic characterization of newly isolated halophilic microorganisms by footprinting: a rapid metabolome analysis. Arch. Microbiol. 189: 19-26 (2008).

Sato F, Hashimoto T, Hachiya A, Tamura K, Choi KB, Morishige T, Fujimoto H, Yamada Y. Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 98: 367-372 (2001).

Sauer U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15: 58-63 (2004).

Sauer U. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 73: 129-169 (2001).

Sauer U, Bailey JE. Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum riboflavin yield. Biotechnol. Bioeng. 64: 750-754 (1999).

Sauer U, Cameron DC, Bailey JE. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol. Bioeng. 59: 227-238 (1998).

Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15: 448-452 (1997).

Sauer U, Schlattner U. Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab. Eng. 6: 220-228 (2004).

Savinell JM, Palsson BO. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154: 421-454 (1992).

Schadel F, Franco-Lara E. Rapid sampling devices for metabolic engineering applications. Appl. Microbiol. Biotechnol. 83: 199-208 (2009).

Schaub J, Reuss M. In vivo dynamics of glycolysis in Escherichia coli shows need for growth-rate dependent metabolome analysis. Biotechnol. Prog. 24: 1402-1407 (2008).

Schauer N, Zamir D, Fernie AR. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56: 297-307 (2005).

Schellenberger J, Palsson BO. The use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284: 5457-5461 (2009).

Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65: 2631-2648 (2004).

Schilling CH, Edwards JS, Letscher D, Palsson BO. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71: 286-306 (2000).

Schilling CH, Edwards JS, Palsson BO. Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15: 288-295 (1999).

Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203: 229-248 (2000).

Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203: 249-283 (2000).

Schilling CH, Schuster S, Palsson BO, Heinrich R. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic Era. Biotechnol. Prog. 15: 296-303 (1999).

Schilmiller AL, Last RL, Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 54: 702-711 (2008).

Schlosser PM, Bailey JE. An integrated modeling-experimental strategy for the analysis of metabolic pathways. Math. Biosci. 100: 87-114 (1990).

Schmid JW, Mauch K, Reuss M, Gilles ED, Kremling A. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. Metab. Eng. 6: 364-377 (2004).

Schmidt K, Carlsen M, Nielsen J, Villadsen J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55: 831-840 (1997).

Schmidt-Dannert C, Umeno D, Arnold FH. Molecular breeding of carotenoid biosynthetic pathways. Nat. Biotechnol. 18: 750-753 (2000).

Schugerl K. Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J. Biotechnol. 85: 149-173 (2001).

Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17: 53-60 (1999).

Schwender J. Metabolic flux analysis as a tool in metabolic engineering of plants. Curr. Opin. Biotechnol. 19: 131-137 (2008).

Schwender J, Ohlrogge J, Shachar-Hill Y. Understanding flux in plant metabolic networks. Curr. Opin. Plant Biol. 7: 309-317 (2004).

Scott MP. Diurnal and developmental changes in levels of nucleotide compounds in developing maize endosperms. Plant Cell Environ. 23: 1281-1286 (2000).

Seagle C, Christie MA, Winnike JH, McClelland RE, Ludlow JW, O'Connell TM, Gamcsik MP, Macdonald JM. High-throughput nuclear magnetic resonance metabolomic footprinting for tissue engineering. Tissue Eng. Part C. Methods May 1 [Epub ahead of print] (2008).

Seagle C, Christie MA, Winnike JH, McClelland RE, Ludlow JW, O'Connell TM, Gamcsik MP, Macdonald JM. High-throughput nuclear magnetic resonance metabolomic footprinting for tissue engineering. Tissue Eng. Part C. Methods 14: 107-118 (2008).

Seginer I. A dynamic model for nitrogen-stressed lettuce. Ann. Bot. (Lond.) 91: 623-635 (2003).

Seginer I, Bleyaert P, Breugelmans M. Modelling ontogenetic changes of nitrogen and water content in lettuce. Ann. Bot. (Lond.) 94: 393-404 (2004).

Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99: 15112-15117 (2002).

Selvarasu S, Ow DS, Lee SY, Lee MM, Oh SK, Karimi IA, Lee DY. Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol. Bioeng. 102: 923-934 (2009).

Selvarasu S, Wong VV, Karimi IA, Lee DY. Elucidation of metabolism in hybridoma cells grown in fed-batch culture by genome-scale modeling. Biotechnol. Bioeng. 102: 1494-1504 (2009).

Semenza GL. Mitochondrial autophagy: life and breath of the cell. Autophagy 4: 534-536 (2008).

Sen AK. Quantitative analysis of metabolic regulation. A graph-theoretic approach using spanning trees. Biochem. J. 275: 253-258 (1991).

Sen AK. Application of electrical analogues for control analysis of simple metabolic pathways. Biochem. J. 272: 65-70 (1990).

Senger RS, Karim MN. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol. Prog. 19: 1199-1209 (2003).

Senger RS, Papoutsakis ET. Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol. Bioeng. 101: 1036-1052 (2008).

Seressiotis A, Bailey JE. MPS - an artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31: 587-602 (1988).

Sevilla A, Schmid JW, Mauch K, Iborra JL, Reuss M, Canovas M. Model of central and trimethylammonium metabolism for optimizing l-carnitine production by E. coli. Metab. Eng. 7: 401-425 (2005).

Shachar-Hill Y. Nuclear magnetic resonance and plant metabolic engineering. Metab. Eng. 4: 90-97 (2002).

Shams Yazdani S, Gonzalez R. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10: 340-351 (2008).

Shanks JV. In situ NMR systems. Curr. Issues Mol. Biol. 3: 15-26 (2001).

Shanks JV, Bhadra R, Morgan J, Rijhwani S, Vani S. Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol. Bioeng. 58: 333-338 (1998).

Shanks JV, Morgan J. Plant 'hairy root' culture. Curr. Opin. Biotechnol. 10: 151-155 (1999).

Shanks JV, Stephanopoulos G. Biochemical engineering. Bridging the gap between gene and product. Curr. Opin. Biotechnol. 11: 169-170 (2000).

Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37: e16 (2009).

Sharma SB, Dixon RA. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J. 44: 62-75 (2005).

Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, Or E, Lavi U, Lewinsohn E, Eyal Y. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 36: 664-674 (2003).

Shastri AA, Morgan JA. A transient isotopic labeling methodology for (13)C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68: 2302-2312 (2007).

Shastri AA, Morgan JA. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 21: 1617-1626 (2005).

Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. U.S.A. 105: 13769-13774 (2008).

Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10: 312-320 (2008).

Shen P, Chao H, Jiang C, Long Z, Wang C, Wu B. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200. Appl. Biochem. Biotechnol. Mar 6 [Epub ahead of print] (2009).

Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor. Appl. Genet. 105: 815-821 (2002).

Sheridan R, Jackson GA, LR, Ward J, Dunnill P. Rational engineering of the TOL meta-cleavage pathway. Biotechnol. Bioeng. 58: 240-249 (1998).

Shi H, Nikawa J, Shimizu K. Effect of modifying metabolic network on poly-3-hydroxybutyrate biosynthesis in recombinant Escherichia coli. J. Biosci. Bioeng. 87: 666-677 (1999).

Shi H, Shimizu K. On-line metabolic pathway analysis based on metabolic signal flow diagram. Biotechnol. Bioeng. 58: 139-148 (1998).

Shi NQ, Jeffries TW. Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 50: 339-345 (1998).

Shimizu H. Metabolic engineering--integrating methodologies of molecular breeding and bioprocess systems engineering. J. Biosci. Bioeng. 94: 563-573 (2002).

Shimizu H, Takiguchi N, Tanaka H, Shioya S. A maximum production strategy of lysine based on a simplified model derived from a metabolic reaction network. Metab. Eng. 1: 299-308 (1999).

Shimizu K. An overview on metabolic systems engineering approach and its future perspectives for efficient microbial fermentation. J. Chin. Inst. Chem. Eng. 31: 429-442 (2000).

Shinmyo A, Shoji T, Bando E, Nagaya S, Nakai Y, Kato K, Sekine M, Yoshida K. Metabolic engineering of cultured tobacco cells. Biotechnol. Bioeng. 58: 329-332 (1998).

Shintani D, DellaPenna D. Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098-2100 (1998).

Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb. Cell Fact. 6: 19 (2007).

Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab. Eng. 7: 59-69 (2005).

Shitu JO, Woodley JM, Wnek R, Chartrain M, Hewitt CJ. Induction studies with Escherichia coli expressing recombinant interleukin-13 using multi-parameter flow cytometry. Biotechnol. Lett. 31: 577-584 (2009).

Shono M, Liu J, Sanmiya K, Singh I, ud Din J, Suzuki K, Tsukaguchi T, Egawa Y. Functional analysis of mitochondrial small heat shock protein. JIRCAS Working Report No.23, "Genetic Engineering of Crop Plants for Abiotic Stress" (Iwanaga M, ed.) p. 17-23 (2002).

Sillers R, Al-Hinai MA, Papoutsakis ET. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng. 102: 38-49 (2009).

Sillers R, Chow A, Tracy B, Papoutsakis ET. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10: 321-332 (2008).

Simeonidis E, Rison SC, Thornton JM, Bogle ID, Papageorgiou LG. Analysis of metabolic networks using a pathway distance metric through linear programming. Metab. Eng. 5: 211-219 (2003).

Simpson TW, Follstad BD, Stephanopoulos G. Analysis of the pathway structure of metabolic networks. J. Biotechnol. 71: 207-23 (1999).

Simpson TW, Shimizu H, Stephanopoulos G. Experimental determination of group flux control coefficients in metabolic networks. Biotechnol. Bioeng. 58: 149-153 (1998).

Singh AK, Elvitigala T, Bhattacharyya-Pakrasi M, Aurora R, Ghosh B, Pakrasi HB. Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol. 148: 467-478 (2008).

Singh SP, Zhou XR, Liu Q, Stymne S, Green AG. Metabolic engineering of new fatty acids in plants. Curr. Opin. Plant Biol. 8: 197-203 (2005).

Sircar D, Mitra A. Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota 2: confirming biosynthetic steps through feeding of inhibitors and precursors. J. Plant Physiol. 166: 1370-1380 (2009).

Sivaprakasam S, Mahadevan S, Rajakumar S. Biocalorimetric studies of the metabolic activity of Pseudomonas aeruginosa aerobically grown in a glucose-limited complex growth medium. Biosci. Biotechnol. Biochem. 72: 936-942 (2008).

Skipsey M, Cummins I, Andrews CJ, Jepson I, Edwards R. Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnol. J. 3: 409-420 (2005).

Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ. Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat. Biotechnol. 17: 1011-1016 (1999).

Smart AG, Amaral LA, Ottino JM. Cascading failure and robustness in metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 105: 13223-13228 (2008).

Smirnoff N. Plant resistance to environmental stress. Curr. Opin. Biotechnol. 9: 214-219 (1998).

Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, Shen L, Donahue WF, Tusneem N, Stromberg MP, Stewart DA, Zhang L, Ranade SS, Warner JB, Lee CC, Coleman BE, Zhang Z, McLaughlin SF, Malek JA, Sorenson JM, Blanchard AP, Chapman J, et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res. 18: 1638-1642 (2008).

Smolke CD, Martin VJ, Keasling JD. Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metab. Eng. 3: 313-321 (2001).

Sohn H, Kuriyama H. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Yeast 18: 125-135 (2001).

Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol. J. 6: 663-678 (2008).

Song H, Kim TY, Choi BK, Choi SJ, Nielsen LK, Chang HN, Lee SY. Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl. Microbiol. Biotechnol. 79: 263-272 (2008).

Song HS, Ramkrishna D. Reduction of a set of elementary modes using yield analysis. Biotechnol. Bioeng. 102: 554-568 (2009).

Sonnewald U. Control of potato tuber sprouting. Trends Plant Sci. 6: 333-335 (2001).

Sontag ED. Some new directions in control theory inspired by systems biology. Syst. Biol. 1: 9-18 (2004).

Sreevidya V, Srinivasa Rao C, Sullia S, Ladha JK, Reddy PM. Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J. Exp. Bot. 57: 1957-1969 (2006).

Sridhar J, Eiteman MA. Metabolic flux analysis of Clostridium thermosuccinogenes: effects of pH and culture redox potential. Appl. Biochem. Biotechnol. 94: 51-69 (2001).

Srinivasan V, Ciddi V, Bringi V, Shuler ML. Metabolic inhibitors, elicitors, and precursors as tools for probing yield limitation in taxane production by Taxus chinensis cell cultures. Biotechnol. Prog. 12: 457-465 (1996).

Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV. Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol. 136: 3043-3057 (2004).

Sriram G, Fulton DB, Shanks JV. Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by (13)C labeling and comprehensive bondomer balancing. Phytochemistry 68: 2243-2257 (2007).

Sriram G, Gonzalez-Rivera O, Shanks JV. Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol. Prog. 22: 1659-1663 (2006).

Sriram G, Shanks JV. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab. Eng. 6: 116-132 (2004).

Srivastava R, Varner J. Emerging technologies: systems biology. Biotechnol. Prog. 23: 24-27 (2007).

Srivastava S, Chan C. Application of metabolic flux analysis to identify the mechanisms of free fatty acid toxicity to human hepatoma cell line. Biotechnol. Bioeng. 99: 399-410 (2007).

Stafford DE, Stephanopoulos G. Metabolic engineering as an integrating platform for strain development. Curr. Opin. Microbiol. 4: 336-340 (2001).

Stafford DE, Yanagimachi KS, Lessard PA, Rijhwani SK, Sinskey AJ, Stephanopoulos G. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proc. Natl. Acad. Sci. U.S.A. 99: 1801-1806 (2002).

Stafford DE, Yanagimachi KS, Stephanopoulos G. Metabolic engineering of indene bioconversion in Rhodococcus sp. Adv. Biochem. Eng. Biotechnol. 73: 85-101 (2001).

Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7: 36 (2008).

Steinbuchel A. In vivo and in vitro metabolic engineering of PHA biosynthesis pathways. Abstracts of Papers of the American Chemical Society 220: 420 (2000).

Steinbuchel A, Hein S. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 81-123 (2001).

Steinle A, Bergander K, Steinbüchel A. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Appl. Environ. Microbiol. 75: 3437-3446 (2009).

Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1-11 (1999).

Stephanopoulos G. Editorial. Metab. Eng. 3: 97 (2001).

Stephanopoulos G. The Jay Bailey young investigator best paper award in metabolic engineering. Metab. Eng. 4: 107 (2002).

Stephanopoulos G. Metabolic engineering. Curr. Opin. Biotechnol. 5: 196-200 (1994).

Stephanopoulos G. Metabolic engineering: enabling technology for biofuels production. Metab. Eng. 10: 293-294 (2008).

Stephanopoulos G. Metabolic engineering. Biotechnol. Bioeng. 58: 119-120 (1998).

Stephanopoulos G. Bioinformatics and metabolic engineering. Metab. Eng. 2: 157-158 (2000).

Stephanopoulos G, Gill RT. After a decade of progress, an expanded role for metabolic engineering. Adv. Biochem. Eng. Biotechnol. 73: 1-8 (2001).

Stephanopoulos G, Hwang D, Schmitt WA, Misra J, Stephanopoulos G. Mapping physiological states from microarray expression measurements. Bioinformatics 18: 1054-1063 (2002).

Stephanopoulos G, Simpson TW. Flux amplification in complex metabolic networks. Chem. Eng. Sci. 52: 2607-2627 (1997).

Stephanopoulos G, Sinskey AJ. Metabolic engineering--methodologies and future prospects. Trends Biotechnol. 11: 392-396 (1993).

Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-1681 (1991).

Strohl WR. Biochemical engineering of natural product biosynthesis pathways. Metab. Eng. 3: 4-14 (2001).

Strom AR. Osmoregulation in the model organism Escherichia coli: genes governing the synthesis of glycine betaine and trehalose and their use in metabolic engineering of stress tolerance. J. Biosci. 23: 437-445 (1998).

Struis RP, Ludwig C, Barrelet T, Krahenbuhl U, Rennenberg H. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. Sci. Total Environ. 403: 196-206 (2008).

Sun W, Shahinas D, Bonvin J, Hou W, Kimber MS, Turnbull J, Christendat D. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition. J. Biol. Chem. 284: 13223-13232 (2009).

Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S, Keasling JD, Maranas CD. Metabolic flux elucidation for large-scale models using (13)C labeled isotopes. Metab. Eng. 9: 387-405 (2007).

Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput. Biol. 5: e1000285 (2009).

Sweetlove LJ, Last RL, Fernie AR. Predictive metabolic engineering: a goal for systems biology. Plant Physiol. 132: 420-425 (2003).

Swiderek H, Logan A, Al-Rubeai M. Cellular and transcriptomic analysis of NS0 cell response during exposure to hypoxia. J. Biotechnol. 134: 103-111 (2008).

Sybesma W, Burgess C, Starrenburg M, Sinderen Dv D, Hugenholtz J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6: 109-115 (2004).

Syriopoulos C, Panayotarou A, Lai K, Klapa MI. Transcriptomic analysis of Saccharomyces cerevisiae physiology in the context of galactose assimilation perturbations. Mol. Biosyst. 4: 937-949 (2008).

Syu M-J, Hou C-L. A neural network study on the dynamic identification of a fermentation system. Bioprocess Engineering 17: 203-213 (1997).

Szyperski T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433-448 (1995).

Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE, Wuthrich K. Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab. Eng. 1: 189-197 (1999).

Tabaeizadeh Z. Drought-induced responses in plant cells. Int. Rev. Cytol. 182: 193-247 (1998).

Tada K, Kishimoto M, Omasa T, Katakura Y, Suga K. L-Lysine production by exponential feeding of L-threonine. J. Biosci. Bioeng. 90: 669-674 (2000).

Talbot A, Neuman MR, Saidel GM, Jacobsen E. Dynamic model of oxygen transport for transcutaneous PO2 analysis. Ann. Biomed. Eng. 24: 294-304 (1996).

Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19: 190-197 (2008).

Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color. Plant Cell Physiol. 39: 1119-1126 (1998).

Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using GC-MS and FT-ICR mass spectrometry. J. Bacteriol. 189: 940-949 (2007).

Tang YJ, Hwang JS, Wemmer DE, Keasling JD. The Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl. Environ. Microbiol. 73: 718-729 (2007).

Tannler S, Zamboni N, Kiraly C, Aymerich S, Sauer U. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab. Eng. 10: 216-226 (2008).

Tao L, Jackson RE, Cheng Q. Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab. Eng. 7: 10-17 (2005).

Tarachiwin L, Masako O, Fukusaki E. Quality evaluation and prediction of Citrullus lanatus by (1)H NMR-based metabolomics and multivariate analysis. J. Agric. Food Chem. 56: 5827-5835 (2008).

Tarczynski MC, Jensen RG, Bohnert HJ. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci. U.S.A. 89: 2600-2604 (1992).

Tartakovsky B, Sheintuch M, Hilmer J-M, Scheper T. Modelling of E. coli fermentations: comparison of multicompartment and variable structure models. Bioprocess Engineering 16: 323-329 (1997).

Tatarko M, Romeo T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr. Microbiol. 43: 26-32 (2001).

Tegner J, Skogsberg J, Bjorkegren J. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits. J. Lipid Res. 48: 267-277 (2007).

Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4: 12-21 (2002).

Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol. Bioeng. 55: 305-316 (1997).

Thiele I, Price ND, Vo TD, Palsson BO. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J. Biol. Chem. 280: 11683-11695 (2005).

Thomas S, Mooney PJF, Burrell MM, Fell DA. Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase. Biochem. J. 322: 111-117 (1997).

Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Loffler FE. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3: e2103 (2008).

Thomaseth K. A modeling tool for biomedical systems. Simulation Practice & Theory 9: 1-19 (2001).

Thomaseth K. PANSYM: a symbolic equation generator for mathematical modelling, analysis and control of metabolic and pharmacokinetic systems. Comput. Methods Programs Biomed. 42: 99-112 (1994).

Thongjuea S, Ruanjaichon V, Bruskiewich R, Vanavichit A. RiceGeneThresher: a web-based application for mining genes underlying QTL in rice genome. Nucleic Acids Res. 37: D996-D1000 (2009).

Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol. 129: 1744-1754 (2002).

Thykaer J, Nielsen J. Metabolic engineering of beta-lactam production. Metab. Eng. 5: 56-69 (2003).

Tian L, Blount JW, Dixon RA. Phenylpropanoid glycosyltransferases from osage orange (Maclura pomifera) fruit. FEBS Lett. 580: 6915-6920 (2006).

Tian L, Dixon RA. Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224: 496-507 (2006).

Tianniam S, Tarachiwin L, Bamba T, Kobayashi A, Fukusaki E. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. J. Biosci. Bioeng. 105: 655-659 (2008).

Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature 457: 309-312 (2009).

Tokai T, Takahashi-Ando N, Izawa M, Kamakura T, Yoshida M, Fujimura M, Kimura M. 4-O-acetylation and 3-O-acetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3. Biosci. Biotechnol. Biochem. 72: 2485-2489 (2008).

Tomas-Pejo E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 100: 1122-1131 (2008).

Tonon T, Harvey D, Larson TR, Graham IA. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24 (2002).

Trawick JD, Schilling CH. Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem. Pharmacol. 71: 1026-1035 (2006).

Trethewey RN. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 7: 196-201 (2004).

Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P. Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208: 227-238 (1999).

Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. (Stuttg.) 7: 581-591 (2005).

Trinh CT, Carlson R, Wlaschin A, Srienc F. Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab. Eng. 8: 628-638 (2006).

Trinh CT, Unrean P, Srienc F. A minimal Escherichia coli cell for most efficient ethanol production from hexoses and pentoses. Appl. Environ. Microbiol. 74: 3634-3643 (2008).

Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 81: 813-826 (2009).

Truksa M, Wu G, Vrinten P, Qiu X. Metabolic engineering of plants to produce very long-chain polyunsaturated fatty acids. Transgenic Res. 15: 131-137 (2006).

Tseng HC, Martin CH, Nielsen DR, Prather KL. Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl. Environ. Microbiol. 75: 3137-3145 (2009).

Tukiainen T, Tynkkynen T, Makinen VP, Jylanki P, Kangas A, Hokkanen J, Vehtari A, Grohn O, Hallikainen M, Soininen H, Kivipelto M, Groop PH, Kaski K, Laatikainen R, Soininen P, Pirttila T, Ala-Korpela M. A multi-metabolite analysis of serum by (1)H NMR spectroscopy: early systemic signs of Alzheimer's disease. Biochem. Biophys. Res. Commun. 375: 356-361 (2008).

Tuteja N. Plant DNA helicases: the long unwinding road. J. Exp. Bot. 54: 2201-2214 (2003).

Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y. Molecular and biochemical characterization of torenia flavonoid 3'-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci. 163: 253-263 (2002).

Umana P, Bailey JE. A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55: 890-908 (1997).

Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol. 68: 1071-1081 (2002).

Urbanczyk-Wochniak E, Sumner LW. MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23: 1418-1423 (2007).

Urbanski JP, Johnson MT, Craig DD, Potter DL, Gardner DK, Thorsen T. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal. Chem. 80: 6500-6507 (2008).

Vadali RV, Bennett GN, San KY. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab. Eng. 6: 133-139 (2004).

Vallabhaneni R, Wurtzel ET. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol. 150: 562-572 (2009).

Vallino JJ, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 67: 872-885 (2000).

Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9: 189-195 (2006).

Valverde F, Losada M, Serrano A. Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant GapN gene. FEBS Lett. 449: 153-158 (1999).

van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, M Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, W Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26: 1161-1168 (2008).

van den Berg MA, Bovenberg RA, de Laat WT, van Velzen AG. Engineering aspects of beta-lactam biosynthesis. Antonie Van Leeuwenhoek 75: 155-161 (1999).

Van Dien SJ, Iwatani S, Usuda Y, Matsui K. Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. J. Biosci. Bioeng. 102: 34-40 (2006).

Van Dien SJ, Lidstrom ME. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol. Bioeng. 78: 296-312 (2002).

Van Dien SJ, Strovas T, Lidstrom ME. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Biotechnol. Bioeng. 84: 45-55 (2003).

van Nes P, Bellomo D, Reinders MJ, de Ridder D. Stability from structure: metabolic networks are unlike other biological networks. EURASIP J. Bioinform. Syst. Biol. 2009: 630695 (2009).

van Riel NA, Giuseppin ML, TerSchure EG, Verrips CT. A structured, minimal parameter model of the central nitrogen metabolism in Saccharomyces cerevisiae: the prediction of the behavior of mutants. J. Theor. Biol. 191: 397-414 (1998).

van Riel NA, Giuseppin ML, Verrips CT. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in Saccharomyces cerevisiae. Metab. Eng. 2: 49-68 (2000).

van Walsum GP, Lynd LR. Allocation of ATP to synthesis of cells and hydrolytic enzymes in cellulolytic fermentative microorganisms: bioenergetics, kinetics, and bioprocessing. Biotechnol. Bioeng. 58: 316-320 (1998).

van Wegen RJ, Lee SY, Middelberg AP. Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol. Bioeng. 74: 70-81 (2001).

van Winden W, Schipper D, Verheijen P, Heijnen J. Innovations in generation and analysis of 2D [13C,1H] COSY NMR spectra for metabolic flux analysis purposes. Metab. Eng. 3: 322-343 (2001).

van Winden W, Verheijen P, Heijnen S. Possible pitfalls of flux calculations based on 13C-labeling. Metab. Eng. 3: 151-162 (2001).

van Winden WA, Heijnen JJ, Verheijen PJ, Grievink J. A priori analysis of metabolic flux identifiability from 13C-labeling data. Biotechnol. Bioeng. 74: 505-516 (2001).

Vanholme R, Morreel K, Ralph J, Boerjan W. Lignin engineering. Curr. Opin. Plant Biol. 11: 278-285 (2008).

Vanrolleghem PA, Heijnen JJ. A structured approach for selection among candidate metabolic network models and estimation of unknown stoichiometric coefficients. Biotechnol. Bioeng. 58: 133-138 (1998).

Varma A, Boesch BW, Palsson BO. Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42: 59-73 (1993).

Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59: 2465-2473 (1993).

Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio-Technol. 12: 994-998 (1994).

Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60: 3724-3731 (1994).

Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective: aspartate family of amino acids. Metab. Eng. 1: 88-116 (1999).

Varner J, Ramkrishna D. Mathematical models of metabolic pathways. Curr. Opin. Biotechnol. 10: 146-150 (1999).

Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective. 2. Qualitative investigation of nodal architechtures and their response to genetic perturbation. Biotechnol. Prog. 15: 426-438 (1999).

Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries. Biotechnol. Prog. 15: 407-425 (1999).

Varner J, Ramkrishna D. Application of cybernetic models to metabolic engineering: investigation of storage pathways. Biotechnol. Bioeng. 58: 282-291 (1998).

Vaseghi S, Macherhammer F, Zibek S, Reuss M. Signal transduction dynamics of the protein kinase-A/phosphofructokinase-2 system in Saccharomyces cerevisiae. Metab. Eng. 3: 163-172 (2001).

Veeramani B, Bader JS. Metabolic flux correlations, genetic interactions, and disease. J. Comput. Biol. 16: 291-302 (2009).

Venkatesh KV, Doshi P, Rengaswamy R. An optimal strategy to model microbial growth in a multiple substrate environment. Biotechnol. Bioeng. 56: 635-644 (1997).

Verbelen PJ, Saerens SM, Van Mulders SE, Delvaux F, Delvaux FR. The role of oxygen in yeast metabolism during high cell density brewery fermentations. Appl. Microbiol. Biotechnol. 82: 1143-1156 (2009).

Verpoorte R. Chapter 1. Secondary Metabolism. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 1-29 (2000).

Verpoorte R, Memelink J. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 13: 181-107 (2002).

Verpoorte R, van der Heijden R, Memelink J. Chapter 2. General Strategies. In "Metabolic Engineering of Plant Secondary Metabolism" (Verpoorte R, Alfermann AW, eds), Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 31-50 (2000).

Verpoorte R, van der Heijden R, Memelink J. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 9: 323-343 (2000).

Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H. Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol. 136: 4048-4060 (2004).

Vinnakota K, Kemp ML, Kushmerick MJ. Dynamics of muscle glycogenolysis modeled with pH time course computation and pH-dependent reaction equilibria and enzyme kinetics. Biophys. J. 91: 1264-1287 (2006).

Visser D, Schmid JW, Mauch K, Reuss M, Heijnen JJ. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab. Eng. 6: 378-390 (2004).

Visser D, van der Heijden R, Mauch K, Reuss M, Heijnen S. Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. Metab. Eng. 2: 252-275 (2000).

Viswanathan K, Lawrence S, Hinderlich S, Yarema KJ, Lee YC, Betenbaugh MJ. Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42: 15215-15225 (2003).

Vital-Lopez FG, Armaou A, Nikolaev EV, Maranas CD. A computational procedure for optimal engineering interventions using kinetic models of metabolism. Biotechnol. Prog. 22: 1507-1517 (2006).

Vives J, Juanola S, Cairo JJ, Godia F. Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry. Metab. Eng. 5: 124-132 (2003).

Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279: 39532-39540 (2004).

Vo TD, Palsson BO. Isotopomer analysis of myocardial substrate metabolism: a systems biology approach. Biotechnol. Bioeng. 95: 972-983 (2006).

Vojinovic V, von Stockar U. Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnol. Bioeng. 103: 780-795 (2009).

Von Sternberg R. Genomes and form. The case for teleomorphic recursivity. Ann. N.Y. Acad. Sci. 901: 224-236 (2000).

von Stockar U, Valentinotti S, Marison I, Cannizzaro C, Herwig C. Know-how and know-why in biochemical engineering. Biotechnol. Adv. 21: 417-430 (2003).

von Wettstein D. From analysis of mutants to genetic engineering. Annu. Rev. Plant Biol. 58: 1-19 (2007).

Wackett LP. Directed evolution of new enzymes and pathways for environmental biocatalysis. Ann. N.Y. Acad. Sci. 864: 142-152 (1998).

Waditee R, Bhuiyan MN, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T. Metabolic engineering for betaine accumulation in microbes and plants. J. Biol. Chem. 282: 34185-34193 (2007).

Wahl SA, Noh K, Wiechert W. 13C labeling experiments at metabolic nonstationary conditions: an exploratory study. BMC Bioinformatics 9: 152 (2008).

Wallenstein EJ, Barminko J, Schloss RS, Yarmush ML. Transient gene delivery for functional enrichment of differentiating embryonic stem cells. Biotechnol. Bioeng. 101: 859-872 (2008).

Wang Cw, Oh MK, Liao JC. Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol. Prog. 16: 922-926 (2000).

Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19: 371-374 (2001).

Wang F, Jiang JG, Chen Q. Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids. Biotechnol. Adv. 25: 211-222 (2007).

Wang F, Raab RM, Washabaugh MW, Buckland BC. Gene therapy and metabolic engineering. Metab. Eng. 2: 126-139 (2000).

Wang J, Chen N, Zhang B, Tan Q, Zhang K. Metabolic flux analysis of L-tryptophan biosynthesis. Wei Sheng Wu Xue Bao 43: 473-480 (2003).

Wang J, Wu X, Du X, Chai R, Sun G. Biogenesis and functions of the peroxisome in phytopathogenic fungi - a review. Wei Sheng Wu Xue Bao 48: 1681-1686 (2008).

Wang L, Gamez A, Archer H, Abola EE, Sarkissian CN, Fitzpatrick P, Wendt D, Zhang Y, Vellard M, Bliesath J, Bell SM, Lemontt JF, Scriver CR, Stevens RC. Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. J. Mol. Biol. 380: 623-635 (2008).

Wang L, Hatzimanikatis V. Metabolic engineering under uncertainty. I: Framework development. Metab. Eng. 8: 133-141 (2006).

Wang L, Hatzimanikatis V. Metabolic engineering under uncertainty. II: Analysis of yeast metabolism. Metab. Eng. 8: 142-159 (2006).

Wang Q, Chen X, Yang Y, Zhao X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl. Microbiol. Biotechnol. 73: 887-894 (2006).

Wang Q, Yang Y, Ma H, Zhao X. Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics 23: 1049-1052 (2007).

Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng. Part A. 14: 227-236 (2008).

Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J. Bacteriol. 190: 7762-7772 (2008).

Wang X, Cui G, Gao W, Huang L. New method of "ingredient difference phonetypical cloning" for functional gene cloning from medicinal plants. Zhongguo Zhong Yao Za Zhi 34: 14-17 (2009).

Wang Y, Liu Z, Zhao A, Su M, Xie G, Jia W. Functional genomic approaches to explore secondary metabolites in medicinal plants. Zhongguo Zhong Yao Za Zhi 34: 6-10 (2009).

Weber J, Kayser A, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology 151: 707-716 (2005).

Weber W, Lienhart C, Baba MD, Fussenegger M. A biotin-triggered genetic switch in mammalian cells and mice. Metab. Eng. 11: 117-124 (2009).

Weber W, Link N, Fussenegger M. A genetic redox sensor for mammalian cells. Metab. Eng. 8: 273-280 (2006).

Weber W, Rimann M, de Glutz FN, Weber E, Memmert K, Fussenegger M. Gas-inducible product gene expression in bioreactors. Metab. Eng. 7: 174-181 (2005).

Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature 393: 365-369 (1998).

Wiback SJ, Mahadevan R, Palsson BO. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol. Bioeng. 86: 317-331 (2004).

Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83: 808-818 (2002).

Wiechert W. Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94: 37-63 (2002).

Wiechert W. 13C metabolic flux analysis. Metab. Eng. 3: 195-206 (2001).

Wiechert W, de Graaf AA. Bidirectional reaction steps in metabolic networks. 1. Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng. 55: 101-117 (1997).

Wiechert W, de Graaf AA. In vivo stationary flux analysis by 13C labeling experiments. Adv. Biochem. Eng. Biotechnol. 54: 109-154 (1996).

Wiechert W, Noh K. From stationary to instationary metabolic flux analysis. Adv. Biochem. Eng. Biotechnol. 92: 145-172 (2005).

Wiechert W, Wurzel M. Metabolic isotopomer labeling systems. Part I: global dynamic behavior. Math Biosci. 169: 173-205 (2001).

Wiesemeier T, Jahn K, Pohnert G. No evidence for the induction of brown algal chemical defense by the phytohormones jasmonic acid and methyl jasmonate. J. Chem. Ecol. 34: 1523-1531 (2008).

Winkel-Shirley B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107: 142-149 (1999).

Wittmann C. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74: 39-64 (2002).

Wittmann C, Hans M, Bluemke W. Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19: 1351-1363 (2002).

Wittmann C, Heinzle E. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl. Environ. Microbiol. 68: 5843-59 (2002).

Wittmann C, Heinzle E. Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur. J. Biochem. 268: 2441-2455 (2001).

Wittmann C, Heinzle E. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab. Eng. 3: 173-191 (2001).

Wittmann C, Kiefer P, Zelder O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287 (2004).

Wlaschin AP, Trinh CT, Carlson R, Srienc F. The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies. Metab. Eng. 8: 338-352 (2006).

Woldman Y, Appling DR. A general method for determining the contribution of split pathways in metabolite production in the yeast Saccharomyces cerevisiae. Metab. Eng. 4: 170-181 (2002).

Wong KT, Lee YY, Brusic V, Tan J, Yap MG, Nissom PM. Elevation of gamma-glutamyltransferase activity in 293 HEK cells constitutively expressing antisense glutaminase mRNA. Metab. Eng. 7: 375-383 (2005).

Wong WW, Tran LM, Liao JC. A hidden square-root boundary between growth rate and biomass yield. Biotechnol. Bioeng. 102: 73-80 (2009).

Wood TK. Molecular approaches in bioremediation. Curr. Opin. Biotechnol. 19: 572-578 (2008).

Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnol. 23: 1013-1017 (2005).

Wu S, Chappell J. Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr. Opin. Biotechnol. 19: 145-152 (2008).

Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45: 895-907 (2006).

Xie L, Lee SA, Hanel BM, Eiteman MA, Altman E. Anaerobic fermentation of Salmonella typhimurium with and without pyruvate carboxylase. Biotechnol. Lett. 23: 111-117 (2001).

Xiu ZL, Deckwer WD, Zeng AP. Estimation of rates of oxygen uptake and carbon dioxide evolution of animal cell culture using material and energy balances. Cytotechnology 29: 159-166 (1999).

Xiu ZL, Zeng AP, Deckwer WD. Multiplicity and stability analysis of microorganisms in continuous culture: effects of metabolic overflow and growth inhibition. Biotechnol. Bioeng. 57: 251-261 (1998).

Xu YL, Li L, Gage DA, Zeevaart JA. Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11: 927-936 (1999).

Yamashita M. Engineering of closed ecological system in space and inter-organismal interactions. Biol. Sci. Space 17: 51-53 (2003).

Yan L, Ropella GE, Park S, Roberts MS, Hunt CA. Modeling and simulation of hepatic drug disposition using a physiologically based, multi-agent in silico liver. Pharm. Res. 25: 1023-1036 (2008).

Yan Y, Liao JC. Engineering metabolic systems for production of advanced fuels. J. Ind. Microbiol. Biotechnol. 36: 471-479 (2009).

Yanagimachi KS, Stafford DE, Dexter AF, Sinskey AJ, Drew S, Stephanopoulos G. Application of radiolabeled tracers to biocatalytic flux analysis. Eur. J. Biochem. 268: 4950-4960 (2001).

Yang C, Hua Q, Shimizu K. Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J. Biosci. Bioeng. 88: 393-403 (1999).

Yang C, Hua Q, Shimizu K. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl. Microbiol. Biotechnol. 58: 813-822 (2002).

Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 6: 87-102 (2000).

Yang C, Hua Q, Shimizu K. Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy. J. Biosci. Bioeng. 93: 78-87 (2002).

Yang C, Hua Q, Shimizu K. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab. Eng. 4: 202-216 (2002).

Yang F, Qian H, Beard DA. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. Metab. Eng. 7: 251-259 (2005).

Yang H, Roth CM, Ierapetritou MG. A rational design approach for amino acid supplementation in hepatocyte culture. Biotechnol. Bioeng. 103: 1176-1191 (2009).

Yang J, Wongsa S, Kadirkamanathan V, Billings SA, Wright PC. Metabolic flux distribution analysis by 13C-tracer experiments using the Markov chain-Monte Carlo method. Biochem. Soc. Trans. 33: 1421-1422 (2005).

Yang TH, Heinzle E, Wittmann C. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput. Biol. Chem. 29: 121-133 (2005).

Yang TH, Wittmann C, Heinzle E. Respirometric 13C flux analysis, part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metab. Eng. 8: 417-431 (2006).

Yang Y; Mariati; Ho SC, Yap MG. Mutated polyadenylation signals for controlling expression levels of multiple genes in mammalian cells. Biotechnol. Bioeng. 102: 1152-1160 (2009).

Yang YT, Aristidou AA, San KY, Bennett GN. Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab. Eng. 1: 26-34 (1999).

Yang YT, Bennett GN, San KY. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab. Eng. 3: 115-123 (2001).

Yang YT, Bennett GN, San KY. Genetic and metabolic engineering. EJB Electronic Journal of Biotechnology 1: 1-8 (1998).

Yang YT, Bennett GN, San KY. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65: 291-297 (1999).

Yang YT, Peredelchuk M, Bennett GN, San KY. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol. Bioeng. 69: 150-159 (2000).

Yang YT, San KY, Bennett GN. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Metab. Eng. 1: 141-152 (1999).

Yaniv Y, Stanley WC, Saidel GM, Cabrera ME, Landesberg A. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling. Ann. N. Y. Acad. Sci. 1123: 69-78 (2008).

Yao K, De Luca V, Brisson N. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 7: 1787-1799 (1995).

Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224: 700-709 (2006).

Yazaki K. Transporters of secondary metabolites. Curr. Opin. Plant Biol. 8: 301-307 (2005).

Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219 (2007).

Ye C, Wu S, Yang Q, Ma C, Yang G, Wang B. Cloning, sequencing and salt induced expression of PEAMT and BADH in oilseed rape (Brassica napus). DNA Seq. 16: 364-371 (2005).

Yen J, Liao JC, Lee BJ, Randolph D. A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. IEEE Trans. On Systems Man And Cybernetics 28: 173-191 (1998).

Yi W, Liu X, Li Y, Li J, Xia C, Zhou G, Zhang W, Zhao W, Chen X, Wang PG. Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc. Natl. Acad. Sci. U.S.A. 106: 4207-4212 (2009).

Yokoyama T, Banta S, Berthiaume F, Nagrath D, Tompkins RG, Yarmush ML. Evolution of intrahepatic carbon, nitrogen, and energy metabolism in a D-galactosamine-induced rat liver failure model. Metab. Eng. 7: 88-103 (2005).

Yoon J, Si Y, Nolan R, Lee K. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection. Bioinformatics 23: 2433-2440 (2007).

Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81: 753-767 (2003).

Yoshida K, Shinmyo A. Transgene expression systems in plant, a natural bioreactor. J. Biosci. Bioeng. 90: 353-362 (2000).

Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol. Bioeng. 100: 542-559 (2008).

Young JD, Ramkrishna D. On the matching and proportional laws of cybernetic models. Biotechnol. Prog. 23: 83-99 (2007).

Yu J, Wang J. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels. Biotechnol. Bioeng. 73: 458-464 (2001).

Yu O, Jez JM. Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J. 54: 750-762 (2008).

Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr. Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13: 421-429 (2008).

Yuan LZ, Rouviere PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8: 79-90 (2006).

Yue AQ, Sun XP, Li RZ. Metabolic engineering of edible plant oils. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33: 489-498 (2007).

Yun H, Lee JW, Jeong J, Chung J, Park JM, Myoung HN, Lee SY. EcoProDB: the Escherichia coli protein database. Bioinformatics 23: 2501-2503 (2007).

Yun SH, Hwang TS, Park DH. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate. J. Microbiol. Biotechnol. 17: 218-225 (2007).

Zahiri HS, Yoon SH, Keasling JD, Lee SH, Won Kim S, Yoon SC, Shin YC. Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab. Eng. 8: 406-416 (2006).

Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56: 17-34 (2001).

Zamboni N, Kummel A, Heinemann M. anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinformatics 9: 199 (2008).

Zamboni N, Mouncey N, Hohmann HP, Sauer U. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab. Eng. 5: 49-55 (2003).

Zampieri M, Soranzo N, Bianchini D, Altafini C. Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms. PLoS ONE 3: e2981 (2008).

Zang YX, Kim JH, Park YD, Kim DH, Hong SB. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Rep. 41: 472-478 (2008).

Zang YX, Lim MH, Park BS, Hong SB, Kim DH. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Mol. Cells 25: 231-241 (2008).

Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766-2777 (2008).

Zeng AP, Modak J, Deckwer WD. Nonlinear dynamics of eucaryotic pyruvate dehydrogenase multienzyme complex: decarboxylation rate, oscillations, and multiplicity. Biotechnol. Prog. 18: 1265-1276 (2002).

Zhang C, Chen Y, Randall AA, Gu G. Anaerobic metabolic models for phosphorus- and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources. Water Res. 42: 3745-3756 (2008).

Zhang C, Du W, Shi X, Wang Y, Wang S, Zheng S, Zhou C, Liang Y. A survey on recent patents of biological pathway based on computational methods. Recent Pat. DNA Gene Seq. 2: 200-208 (2008).

Zhang F, Sun X, Yi X, Zhang Y. Metabolic characteristics of recombinant Chinese hamster ovary cells expressing glutamine synthetase in presence and absence of glutamine. Cytotechnology 51: 21-28 (2006).

Zhang F, Yi XP, Sun XM, Zhang YX. Metabolism of recombinant CHO-GS cell reducing of toxic effect of ammonia. Sheng Wu Gong Cheng Xue Bao 22: 94-100 (2006).

Zhang G, Mills DA, Block DE. Development of chemically-defined media supporting high cell density growth of Lactococci, Enterococci, and Streptococci. Appl. Environ. Microbiol. 75: 1080-1087 (2009).

Zhang K, Sawaya MR, Eisenberg DS, Liao JC. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. U.S.A. 105: 20653-20658 (2008).

Zhang L, Zhang L, Ding Z, Wang Z, Shi G. Metabolic engineering for improving ethanol fermentation of xylose by wild yeast. Sheng Wu Gong Cheng Xue Bao 24: 950-956 (2008).

Zhang Y. Approaches to optimizing animal cell culture process: substrate metabolism regulation and protein expression improvement. Adv. Biochem. Eng. Biotechnol. 113: 177-215 (2009).

Zhang Y, Huang Z, Du C, Li Y, Cao Z. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101-106 (2009).

Zhang Y, Li Y, Du C, Liu M, Cao Z. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab. Eng. 8: 578-586 (2006).

Zhang Z, Scharer JM, Moo-Young M. Mathematical model for aerobic culture of a recombinant yeast. Bioprocess Engineering 17: 235-240 (1997).

Zhao GR, Luo T, Zhou YJ, Jiang X, Qiao B, Yu FM, Yuan YJ. fabC of Streptomyces lydicus involvement in the biosynthesis of streptolydigin. Appl. Microbiol. Biotechnol. 83: 305-313 (2009).

Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl. Microbiol. Biotechnol. 84: 667-676 (2009).

Zhong JJ. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv. Biochem. Eng. Biotechnol. 72: 1-26 (2001).

Zhong JJ, Yue CJ. Plant cells: secondary metabolite heterogeneity and its manipulation. Adv. Biochem. Eng. Biotechnol. 100: 53-88 (2005).

Zhou H, Lai N, Saidel GM, Cabrera ME. Multi-scale model of O2 transport and metabolism: response to exercise. Ann. N. Y. Acad. Sci. 1123: 178-186 (2008).

Zhou ML, Shao JR, Tang YX. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnol. Appl. Biochem. 52: 313-323 (2009).

Zhou X, Van Eck J, Li L. Use of the cauliflower Or gene for improving crop nutritional quality. Biotechnol. Annu. Rev. 14: 171-190 (2008).

Zhu C, Naqvi S, Capell T, Christou P. Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch. Biochem. Biophys. 483: 182-190 (2009).

Zhu J, Shalel-Levanon S, Bennett G, San KY. Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab. Eng. 8: 619-627 (2006).

Zhu J, Shimizu K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 7: 104-115 (2005).

Zhu T, Phalakornkule C, Ghosh S, Grossmann IE, Koepsel RR, Ataai MM, Domach MM. A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis. Metab. Eng. 5: 74-85 (2003).

Zhu Y, Eiteman MA, Altman R, Altman E. High glycolytic flux improves pyruvate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 74: 6649-6655 (2008).

Ziagova M, Kyriakou G, Liakopoulou-Kyriakides M. Co-metabolism of 2,4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. J. Hazard. Mater. 163: 383-390 (2009).

Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus. PLoS One. 4: e5135 (2009).

Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14: 1265-1277 (2002).

Zupke CA, Stefanovich P, Berthiaume F, Yarmush ML. Metabolic effects of stress mediators on cultured hepatocytes. Biotechnol. Bioeng. 58: 222-230 (1998).

Number of references = 1310

| PubMed Search | Entrez Protein Search | ISI Web of Knowledge Search | Scirus Search |

David Rhodes
Department of Horticulture & Landscape Architecture
Horticulture Building
625 Agriculture Mall Drive
Purdue University
West Lafayette, IN 47907-2010
Last Update: 10/01/09