Insect Management for Organic Vegetable Production

Richard Weinzierl
Department of Crop Sciences
University of Illinois

Insect Management for Organic Vegetable Production

► An overview of practices
 • Overall cultural practices ... rotations, altered planting dates, crop residue destruction, etc.
 • Pest exclusion and repellency
 • Recognizing and manipulating natural enemies (predators, parasites, and pathogens)
 • Organic insecticides: botanical and microbial insecticides, soaps, oils, and others
► A few specifics on ... sweet corn and cabbage

Learn about the pests ...

► Learn the life histories of major insect pests, disease, and weeds
► Learn to identify key insects, diseases, and weeds
► Understand WHY control is needed (if it is)
► Develop appropriate expectations
► Think critically ... do you really believe that a particular practice or product or organism can work as claimed? Is it harmless or appropriate just because it is organic?

Information sources

► Midwest Vegetable Production Guide
 • http://www.btny.purdue.edu/Pubs/ID/ID-56/
► Home, Yard, and Garden Pest Guide
 • Order from: https://webstore.aces.uiuc.edu/shopsite/C1391.html
► Home, Yard, and Garden Newsletter
 • http://www.ag.uiuc.edu/cespubs/hyg/html/

What about reduced tillage, weedy cultures, and interplantings?

► Stable habitats and crop residues favor survival of predaceous and parasitic insects
► Some plants are slightly repellent to certain insects
► “Complex” crop landscapes slow the buildup of some specialist pests
► Crop residues and weeds also favor the establishment and success of some pests
► Weeds may serve as winter / alternate hosts of crop viruses (CMV, for example)
► On the scale that affects insect movement and host plant identification and selection, ALL gardeners are practicing interplantings...
Natural enemies

- Predators, parasites, and pathogens
- To enhance their success...
 - Recognize them; know what they do
 - Minimize insecticide use
 - Use selective insecticides in selective ways
 - Maintain favorable habitats
 - Provide alternative foods (pollen, nectar, etc.)

Naturally occurring predators

- Aphid gourmets
 - Green lacewings
 - Lady beetles
 - Hover flies

Naturally occurring predators

- The unsung generalist
 - Insectivores
 - Ground beetles
 - Rove beetles
 - Predaceous bugs
 - Praying mantids
 - Birds and bats

Predators available for purchase

- Green lacewings
- Convergent lady beetle
- Spined soldier bug
- Praying mantids
- Predaceous mites (for greenhouses)

Parasites

- "Alien" in real life
- Most are very host-specific
- Importation, establishment, and conservation generally are more appropriate than purchase and release
- (Augmentation is more valuable in greenhouses than in most garden and field situations)

Parasites to purchase

- Encarsia formosa against greenhouse whitefly in greenhouse production
- Trichogramma ostrinia against Lepidopteran pests of vegetables, including sweet corn
 - Trichogramma spp. develop completely within the eggs of their host
Insect pathogens

► Viruses
► Bacteria
 • Bacillus thuringiensis (various subspecies)
► Fungi
 • Beauveria, Entomophthora, and Metarrhizium spp.
► Protozoa
 • Nosema spp.
► Nematodes
 • Steinernema & Heterorhabditis

Insecticides: Botanicals, microbials, and other alternatives

► Appropriate IF ...
 • they are low in toxicity to nontarget organisms ("selective")
 • they do not persist in the environment (and are not moved to unwanted destinations)
► Selectivity and short persistence are weaknesses as well as strengths

Insecticide references

► An Introduction to Insecticides, by George Ware, at
 • http://www.ent.agri.umn.edu/academics/classes/ipm/chapters/ware.htm
► Insecticides, Chemistries, and Characteristics, by Jeffrey Bloomquist, at
 • http://www.ent.agri.umn.edu/academics/classes/ipm/chapters/bloomq.htm

Botanicals

► Pyrethrins
 • From pyrethrin daisies
 • Axonic poisons
 • Low in toxicity to mammals
 • Very rapid breakdown ... no residual action
 • Used to kill fleas and lice on humans and pets; labeled for use on many fruits and vegetables
► Rotenone
 • From roots of Derris and other tropical legumes
 • Disrupts cellular respiration
 • Moderate toxicity to mammals (~ Sevin); very toxic to fish
 • Moderate persistence (~ Sevin)
 • Used against many pests, especially beetles
 • No longer on the NOP list of approved materials

Botanicals

► Sabadilla
 • From seeds of a tropical lily & European Veratrum spp.
 • Axonic poison
 • Very low in toxicity to mammals, but a severe membrane irritant
 • Breaks down very rapidly
 • Effective against squash bug, harlequin bug, and citrus thrips
 • Sabadilla & ryania are not available now
► Neem
 • From woody stems of S. American Rynia shrubs
 • Calcium channel poison
 • Low mammalian toxicity
 • More persistent than rotenone but less potent
 • Used against caterpillars in fruits and vegetables
 • Used medicinally
 • Very short persistence
 • Labeled on many crops and landscape plants, especially against soft-bodied insects
► Citrus oil components
 • Limonene and linalool
 • From citrus oils
 • Very short persistence
 • Low acute toxicity to mammals, but some evidence of chronic toxicity
 • Less toxic than crude citrus extracts
 • Mostly in pet shampoos, etc.
Botanicals

- **Nicotine**
 - From tobacco, other *Nicotiana* spp., others
 - Acetylcholine mimic
 - Very toxic to humans, orally and dermally
 - Very short persistence
 - Used in greenhouses against aphids, thrips, and mites
 - Not on the NOP list of approved substances

- **Citronella**
- **Pennyroyal**
- **Garlic**
- **Rosemary oil**
- **Hot pepper**

Oils

- **Dormant oils for fruit and landscape trees**
- **Stylet oils**
 - Reduce virus transmission, may suppress powdery mildew
- **Summer oils**
 - Against mites, aphids, other soft-bodied pests
- **Coverage is essential (upper and lower leaf surfaces); oils kill by suffocating pests that are sprayed directly**

Insecticidal soaps

- Salts of fatty acids
- Kill insects by disrupting membranes (including tracheal linings)
- Work only against those insects that are wetted by the spray ... no residual action
- Effective against aphids, whiteflies, mites, and other soft-bodied, not-too-mobile pests
- Best-known brand names are Safer’s and M-Pede
- Make your own? Generally ... NO !!!

Absorbents & abrasives

- **Clays, diatomaceous earth, silica aerogels**
 - Disrupt the insect’s cuticle and kill by dehydration
- **Kaolin ... “Surround”**

Elemental and naturally occurring chemicals

- **Sulfur**
 - Effective miticide (may cause plant injury)
- **Copper**
- **Arsenic no longer used**

Microbials

- **Bacillus thuringiensis kurstaki and aizawai**
 - Toxic only to Lepidopteran larvae (caterpillars)
 - Must be ingested to be effective
 - Degraded by ultraviolet light ... short residual activity on treated foliage
 - Good targets: Leps on cabbage, hornworms and fruitworm on tomatoes, European corn borer on sweet corn, etc.
 - Not effective against: larvae that bore or tunnel into plants without much feeding on the surface
 - Dipel, Agree, XenTari, and many others
Microbials

- *Bacillus thuringiensis tenebrionis*
 - effective against Colorado potato beetle larvae
- *Bacillus thuringiensis israelensis*
 - effective against larvae of black flies, fungus gnats, and some mosquitoes
- *Bacillus popilliae and Bacillus lentimorbus*
 - effective against larvae of Japanese beetles (but not very effective against other white grubs)
 - Trade Names include Doom, Japidemic, Milky-spore

Microbials

- Spinosads ... Entrust™ by Dow
 - Derived from a soil actinomycete
 - Effective against a range of insects, including corn earworm, Colorado potato beetle, the "worms" on cabbage and related cole crops, apple maggot, and (less so) codling moth

Microbials

- Viruses
- Fungi
- Protozoans
- Nematodes ... might be used against soil insects where moisture can be maintained

Alternatives in Insect Management

Biological and Biorational Approaches

- http://www.ag.uiuc.edu/~vista/abstracts/aaltinsec.html

A few specifics ...

- Sweet corn
- Cabbage and broccoli

Sweet corn

- Target pests
 - Seedcorn maggot
 - Cutworms
 - Corn flea beetle
 - Northern and western corn rootworms
 - Corn leaf aphid
 - Corn rootworm beetles, Japanese beetle
 - Corn earworm, European corn borer
Site selection

- Crop rotation
 - Any rotation except corn after corn used to avoid damage by corn rootworm larvae, BUT ...
 - Wireworms and white grubs most numerous following sod

- Avoiding seedcorn maggot damage
 - Greatest in soils high in organic matter, recently manured (including green manures); also greatest in cool, wet soils

Planting dates

- Earliest plantings ...
 - are least susceptible to EAR damage by corn earworm and fall armyworm

- Earliest plantings ...
 - are most susceptible to damage by seedcorn maggot (and cutworms)

Hybrid selection

- Plant Stewart’s wilt resistant hybrids
- No OMRI- or NOP-listed insecticides will control corn flea beetles well enough to reduce transmission adequately

Controlling insect infestations

- Rotenone
 - Some effectiveness against flea beetles, Japanese beetle, and rootworm beetles
- *Bacillus thuringiensis*
 - As sprays or granules, effective against European corn borer on whorl-stage corn
- (Rynia) + rotenone + pyrethrins
 - Sold to control ear-feeding Leps, but not very effective

What about? ...

- Corn earworm and corn borer ear damage
 - BTs and standard botanicals are generally NOT effective, especially against CEW (though transgenic BT sweet corns are less damaged by earworms and related pests)
 - Entrust
 - *Trichogramma ostriniae*
 - Oils (garlic, SunSpray, etc.) on ear tips?
 - Early plantings escape peak infestations
 - Chopping ear tips
 - Hybrid selection
Cabbage and broccoli

- Target pests
 - Cabbage maggot
 - Flea beetles
 - Cabbage aphid, turnip aphid, green peach aphid
 - Virus transmission is NOT an issue in the midwestern US
 - "Leps" ... cabbage looper, imported cabbage worm, diamondback moth

Site selection and residue management

- Crop rotation
 - More important for disease than insect control
 - Some benefit against maggots and cabbage aphid

- Residue destruction
 - Removes host plant material for root maggots, diamondback moth, others

Planting dates and varieties

- Earliest plantings are more susceptible to cabbage maggot damage (more a northern than southern pest)
- Lepidopteran pests and aphids are more numerous in later plantings

Early-season practices

- Buy transplants free of aphids and diamondback moth larvae
- For flea beetle control ... rotenone or floating row covers
- Row covers also exclude egg-laying adults of cabbage maggot and Lepidopterans (caterpillars)

Cabbage aphid

- Row covers provide early protection
- M-Pede (insecticidal soap) or neem
- Little or no data support use of garlic oil
- Rogue out infested plants
“Leps”

- Larvae of moths and butterflies
 - cabbage looper
 - imported cabbage worm
 - diamondback moth
- Populations increase through the summer

Thresholds: based on % plants infested with live larvae of any of the 3 species ...
- Seedbed: 10%
- Broccoli and cauliflower
 - Before flowering: 50%
 - Maturing heads: 10%
- Cabbage
 - Before cupping: 30%
 - Cupping to early head: 20%
 - Maturing heads: 10%

For Lep control ...

- Row covers provide early protection
- *Bacillus thuringiensis kurstaki / aizawai* ... Dipel, Agree, XenTari, and others
 - Most effective against young larvae
 - Least effective against cabbage looper
 - Diamondback moth resistance to Bt evolved in Hawaii and Florida as a result of field use in crucifers

In all vegetable crops, what benefits do weedy cultures and interplantings offer?

- "Homes" and food sources for beneficial insects (predators and parasites)
- Nonfood "dilution" for specialist pests
- Sources for pest insects
- Sources of crop viruses
- Small-flowered plants are best for natural enemies ... umbelifers and clovers